SELF-SIMILAR SETS AND MEASURES (*)
by SIEGFRIED GRAF (in Passau)(**)

A major theme in the theory of fractals is that of self—similarity:
the whole fractal set is composed of smaller parts which are geo-
metrically similar to whole set. There are several ways to formulate
this concept in a mathematically rigorous way. Here I will deal with
Hutchinson’s definition of self-similarity. It is the purpose of this
lecture to collect some of the basic results concerning the Hausdorff
dimension, Hausdorff measure and local structure of self-similar sets
and measures. | am not striving for completeness but rather use my
own research interests as a guide to the results and problems in the
area. Most of the proofs are omitted. Interested readers are refered
to the literature.

1. Iterated function systems and their attractors.

In this section I will describe the basic construction for self—
similar sets using the terminology of Barnsley [2].

1.1. DEFINITION.
Let (F,d) be a metric space,

a) A map w : F — FE is called a contraction if there exists a
number ¢ < 1 such that d(w(z),w(y)) < cd(z,y) for all z,y €
E. By Lip(w) we denote the smallest ¢ satisfying the above
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condition and call it the contraction or Lipschitz constant
of w.

b) An iterated function system (/FS) on F is an N-tuple
(w1, ..., wy) of contractions from F into itself.

c) A non-empty compact subset A of E is called an attractor of

the IFS (wy,...,wy)if A=w(A)U...Uwn(A).

1.2. THEOREM. (Hutchinson [6]) If (£, d) is complete then every
IFS on F has a unique attractor.

Idea of proof. Consider the space K(F) of all non-empty compact
subsets of F/ with the Hausdorff metric h:

h(K,L) =max(max{d(z,L):z € K}, maz{d(y,K):y € L}).
Then (K(E),h) is complete and W : K(£) — K(E) defined by
W(K)=w(K)U...Uwn(K)

is a contraction. Hence the theorem follows from Banach’s fixed
point theorem.

1.3. THEOREM. (Hutchinson [6]) Let (E, d) be complete, (w1, .. .,
wy) an [FS on E with attractor A and zo € FE. Then, for every
ne{l,..., NN the limit

nh_)rlgo Wy, ©...0 Wy, (20)

N

exists and is a point in A. Moreover, the map = : {1,...,N}* —

An— nh_)rglo Wy, 0 ...0wy,, (z0) is continuous and onto.
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2. Natural measures on the attractor of an iterated function
system.

Here I will introduce a class of measures related to iterated func-
tion systems. In the following (F,d) is always a complete metric
space, (wy,...,wy) an IS on E, A its attractor, p := (p1, ..., pN)
is a probability vector, v, is the corresponding product measure on
{1,...,N}N and g, = v, o 77! is the image measure of v, with re-
spect to 7.

2.1. THEOREM. (Hutchinson [6]) The measure y, is the unique
probability measure i on F with

N
p=> pipow;"
=1

2.2. REMARK AND DEFINITIONS.

N
(i) There is a unique @ € Ry with Y Lip(w;)® = 1. « is called the
i=1
similarity dimension of (wy, ..., wy).
(ii) For p = (Lip(wy)®, ..., Lip(wn)®) the measure p, is called the
canonical measure on the attractor A and denoted by pu.

3. Connection between Hausdorfl dimension and similarity
dimension for self-similar sets.

3.1. DEFINITION. A map S : F — F is called a similitude if
there is a ¢ €]0,4o00[ with
d(Sz,Sy) = cd(z,y) forall z,y € F.

The attractor of an IFS consisting of similitudes is called a self-
similar set. For 3 € [0,+0c0[,8 > 0 and B C F define

H?(B) = inf{z diam(Ui)ﬁ | B C UjerU;, U; open, diam(U;) < 6}.
€17
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Then HP(B) := %in% %?(B) is the B—dimensional Hausdorff mea-
—

sure of B.

There exists a unique f3. € [0,400] with H?(B) = oo for all 3 < f.
and HP(B) = 0 for all 3 > B.. The number (3, is called the Haus-
dorff dimension of B and is denoted by H—dim(B).

In the following (Si,...,Sn) is always an I F'S consisting of simili-
tudes of E/, A is its attractor, and « its similarity dimension.

Next I will summarize the main results concerning the connec-
tion of @ and H—dim(A).

3.2. THEOREM. (Hutchinson [6]) The a—-dimensional Hausdorff
measure of A is finite, in particular the Hausdorff dimension of A is
less than or equal to a.

The question under what circumstances the Hausdorff dimension of
A actually equals the similarity dimension « led Hutchinson [6] to
define the open set condition.

3.3. DEFINITION. The IFS (Sy,...,Sn) satisfies the open set
condition (OSC) if there is a non—-empty open set U C FE with
S;(U) ¢ U and S;(U)n S;(U) = 0 for all i,5 € {1,...,N} with
i,

If there is such a U with U N A # ( then (Sy,...,Sn) satisfies the
strong open set condition (SOSC).

3.4. THEOREM. (Schief [14]) The following implications hold
(i) H*(A) > 0= (S51,...,5n) satisfies the SOSC
(ii) (S1,...,SnN) satisfies the SOSC' = H-dim(A) = a.
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For general complete metric spaces the converse of both of these im-
plications is false (see Schief [14]). But for euclidean spaces we have
the following result:

3.5. THEOREM. (Moran [8], Hutchinson [6], Schief [13]) If £ =
R™ then the following statements are equivalent

(i) (Si,...,Sn) satisfies the OSC
(ii) (Si,...,SnN) satisfies the SOSC
(iii) 0 < H(A).

If (i) - (iii) hold then the canonical measure p on A is the normal-
ization of the a—dimensional Hausdorff measure restricted to A.

The implication (i) = (ii) was proved by Hutchinson [6] who thereby
rediscovered an argument used by Moran [8] in a more general con-
text. Hutchinson [6] also proved the statement about the canonical
measure. The remaining assertions of the theorem were proved by

Schief [13].

As an obvious consequence the preceding theorem has the following
corollary.

3.6. COrROLLARY. If B = R™ and (Sy,...,SN) satisfies the OSC
then o« = H-dim(A).

That the converse does not hold even for £ = R is a consequence of
the first of the following remarks.

3.7. REMARKS.

(i) Let S1,5%,595 : R — R be defined by Sz = %,Sg.r = %a@ +
t, Sz = %x + % with ¢ € [0, %[ Then (51, Sz, 53) is an IFS con-
sisting of similitudes and there exists a ¢ €]0, %[ such that o =
H-dim(A) and H*(A) = 0. (Bandt-Mattila, oral communica-
tion 1989)
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(i) There is a complete metric space (£, d) and an [F'S (Sq,..., Sn)
on I consisting of similitudes and satisfying the SOSC with
H*(A) = 0. (Schief [14]).

While the first remark follows from a projection theorem for the
1-dimensional Hausdorff measure which does not give an explicit
value for ¢ the second remark is proved by exhibiting an explicit ex-
ample.

3.8. DEFINITION.

An IFS (Sy,...,Sn) with attractor A satisfies the relative open
set condition (ROSC) if there exists a non—empty set U, which is
open in the relative topology on A, such that

S;(U)ycuU and
S;(U)yn S;(U) =0 fori#jy

and all ¢,7 € {1,...,N}.

3.9. THEOREM. If (S1,...,SnN) satisfies the ROSC then H-—
dim(A) = a.

Proof. The result is an immediate consequence of Theorem 3.4
(ii) if one takes F' = A.

3.10. PrOBLEM. Does the converse of Theorem 3.9 hold? (The
answer is not known even for £ = R™).
4. The dimension of the measures fi,,.

In this section (Sy,...,Sn) is an [ F'S on the euclidean space R™
consisting of similitudes.
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4.1. DEFINITION.

a) Let v be a probability measure on R™. Then H-dim(v) =
inf{ H—dim(B) | B Borel set, v(B) = 1} is called the Hausdorff
dimension of v.

b) If p=(p1,...,pn) is a probability vector and p, the correspond-
ing natural probability measure on the attractor A of (Sy, ..., Sn).
Then

N N
o) = (Zpilogpi) / (ZpilogLip(Si))

is called the similarity dimension of y,,.

4.2. REMARK. If p = (Lip(S1)?,..., Lip(Sy)®) then a, = a.

4.3 THEOREM. (Cawley-Mauldin [4])
If (S1,...,SN) satisfies the OSC then

H-dim(p,) = ay.

5. The density of self-similar sets.

In this section I will discuss several results related to the classical
Lebesgue density theorem.

5.1. DEFINITION.

a) Let 3 be a non—negative real number and B a Borel subset of R™.
B is called a g—set if it has positive and finite §-dimensional
Hausdorff measure.

b) For a subset B of R™ and a point z € R™ we call

-  HA(BNBa,r)
D’ (B,z) =1
(8:2) = lim S0 =
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the upper density of B at z and

B
DA (B, z) = lim inf 2B OB 1))
r—0 (QT)ﬁ

the lower density of B at z.

Here B(z,r) denotes the open ball of radius r and center z.

If Eﬁ(B,ac) and DP(B,z) are both finite and equal then the
common value is called the density of B at z and denoted by

D(B,z).

5.2. THE LEBESGUE DENSITY THEOREM. Let B C R™ be
Lebesgue measurable. Then

D™(B,z) = 15(z)

for H™ — a.e. z € R™.

5.3. REMARK. It should be noted that H™ is a multiple of the m—

dimensional Lebesgue measure A™. One has H™ = ﬁ,\m and
(B(0,3))

it is well-known that A™(B(0,3)) = ﬁ%”/Q”(%)! This relation be-

tween m—dimensional Hausdorff and Lebesgue measure implies that

the above result is indeed a version of the classical Lebesgue density

theorem because

H™(BNB(z,r))  AN™(BnNB(z,r))
(2r)™ ~ A(B(z,r)

In the following I will investigate how the Lebesgue density theorem
can be generalized to J—sets. The next theorem shows that a direct
generalization is not possible.

5.4. THEOREM. (Marstrand [7]) If § is a non-negative number
which is not an integer and if B is a f—subset of R™, then

D%(B,z) < D’(B,z)
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for H°— a.e. = € B and, moreover,
DP(B,z) =0

for HP— a.e. z € R™\ B.

Using the concept of density of order two developed and studied by
Bedford—-Fisher [3] I obtained the following result concerning the av-
erage density which was independently proved by Patzschke-Zahle
[10] in a more general context and applying different methods.

5.5. THEOREM. If (S1,...,Sn) is an IF'S on R™ consisting of
similitudes and satisfying the OSC and if A is its attractor and o its
similarity dimension then there exists a ¢ €]0,4o00[ such that

. T H*(B(z,e”") N A)
lim T/ 20‘6 — dt = ¢

T—o0

for HY —a.e. z € A.

5.6. REMARKS.

a) For the Cantor set in the line Patzschke-Zahle [10] calculated the
number ¢. In the general case of Theorem 5.5 there is a formula
for ¢ (see Graf [5], Patzschke-Zahle [11]) but its numerical value
is still hard to compute.

b) It seems to be an open problem whether in the situation of The-
orem 5.5, for every Borel set B C A,

lim T/ (B0 Bz, e))dt:clB(:c)

T—o0 Qog—at

for H%—a.e. z € A.
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6. The tangential structure of self-similar sets and mea-
sures.

It is the purpose of this section to review some of the results
concerning the local structure of self-similar measures. First 1 will
recall the definition of tangent measure due to Preiss [12] and state
a fundamental result of his concerning rectifiability which illustrates
the meaning of tangent measures.

6.1. DEFINTION.

(i) Forz € R™ and r > 0 define T, , : R™ — R™ by

Typr(2) = =(2 —2).

r

(ii) Let ® and W be locally finite Borel measures on R™ and z € R™.
VU is called a tangent measure of ® at z if ¥ # 0 and there
are sequences 1 J 0 and ¢, > 0 such that W is the vague limit
of the sequence (c;® o T, ! Jren- Let Tan(®,z) denote the set

T,k
of all tangent measures of ® at z.

(iii) For £ € {1,...,m} a locally finite Borel measure & on R™
is called k—rectifiable if there exists a sequence (Cj) of C'-
manifolds of dimension & such that ®(R™ \ [JC}) = 0.

l

6.2. THEOREM. (Preiss [12]) For a locally finite Borel measure
® on R™ the following statements are equivalent

(i) @ is k-rectifiable

(i) }-l—rﬂ) ¢ Br,f’r exists and is finite and positive for ®-a.e. * € R™

iii) For ®—a.e. x € R™ one has lim in 2(B(z.r)) < oo and there
( ) r—0 rk

is a k—dimensional subspace V of R™ with Tan(®,z) = {CHf“V |
c>0}.
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Considering this result of Preiss it seems to be of interest to study
the set of tangent measures for more general measures on R™. In
particular one has the following

6.3. PROBLEMS. Let (S1,...,Sn) be an I F'S consisting of simil-
itudes on R™ and let p = (p1, ..., pn) be a probability vector and g,
the corresponding natural measure on the attractor A (see Section
2).

a) Determine T'(p,, z) (at least for y,—a.e. ).
b) Is Tan(py, z) = Tan(p,, y) for p, ® p,—a.e. (z,y)?

For fractal measures ® the sets T'an(®, z) are usually rather com-
plicated. Inspired by an idea of U. Z&hle [15] Bandt [1], therefore,
introduced the concept of random tangent measures or, equivalenty,
probability distributions on the set of tangent measures, the so—called
tangent measure distributions.

6.4. DEFINITION. Let M,, be the space of all locally finite mea-
sures on R™ with the topology of vague convergence. For a locally
finite Borel measure on R™ a Borel probability P on M,, \ {0} is
called a tangent measure distribution of ® at z € R™ if there
exists a non—decreasing function h : Ry — R4 \ {0} and a sequence
(vk)ken of Borel probabilities on R4 \ {0} with kli_)rglo vp = gg (where
gg is the Dirac measure at 0 and the convergence is weak conver-
gence) such that the image probabilities P of vy with respect to the
map Ry \ {0} = M,,,r = (h(r))"'®oT; ! converge to P (weakly).

z,r

6.5. REMARK. To my knowledge no statements about general
tangent measure distributions have been proved so far. TFor the
known results the class of probabilities on Ry \ {0} from which the
v are chosen and the function h are specialized. In this context
Morters [9] has investigated the basic properties of uniquely deter-
mined tangent measure distributions.
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6.6. DEFINITION. For 1 > R > 0 let kg be the Borel probability
on [R, 1] defined by
1t dr

kr(B) = Y i 15(r) .

6.7. REMARK. kg is Haar measure on the group (R4 \ {0}, ")
restricted to the interval [R, 1] and normalized. Moreover one has

lim kg = €o (weak convergence).
R—0

The following theorem was conjectured and proved in special cases

by Bandt [1].

6.8 THEOREM. (Graf [5]). Let (Si,...,SN) be an IF'S consisting
of similitudes on R™ and A its attractor. Let p = (p1,...,pN) be
a probability vector and p, the corresponding natural measure on
A. For z € A let PE be the image of kg with respect to the map
R\ {0} = My, r — pp(B(z,r)) 'y o T}, Then there exists a
Borel probability P on M, such that

lim P =P (weak convergence)
R—0

for p,—a.e. x € A.

6.9. COROLLARY. The P in Theorem 6.8 is a tangent measure
distribution of y, at z for py,-a.e. z € A.

6.10. ProOBLEM. Given two different tangent measure distribu-
tions of p1,, at . What is their relationship (p,-a.c.)?
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