CONSTANT OBSTACLE PROBLEM AND
REARRANGMENTS (*)

by CArRLO RavaGLia (in Bologna)(**)

SOMMARIO. - Problema con ostacolo costante e riordinamenti. Si da una
maggiorazione della misura dell’insieme di contatto della soluzione di
una disequazione variazionale con ostacolo costante, con un operatore
ellittico del secondo ordine contenente i termini di ordine inferiore.

SUMMARY. - We give an upper bound for the measure of the coincidence
set of the solution of a variational inequality with constant obstacle,
related to an elliptic second order operator with lower-order terms.

1. Introduction.

We consider the obstacle problem
u € K, (Vv e K) / (e grad u|grad (v — u)) + / (blgrad u) (v — u)+
Q Q

—I—/ch(v—u)Z/Qf(v—u),

where the operator is elliptic and
K={ve HyQ);v<k}, k>0.

Our aim is to establish some properties of a solution of the prob-
lem, by Schwarz symmetrization.

(*) Pervenuto in Redazione il 20 ottobre 1994.

(**) Indirizzo dell’Autore: Dipartimento di Matematica e Centro di Ricerca di
Matematica Applicata, C.I.R.A.M., Universita di Bologna, Via Saragozza 8,
40123 Bologna (Italia), E-mail address: ravaglia@ciram3.cineca.it
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This technique has been developped first by Talenti [31] to com-
pare the solution of a homogeneous Dirichlet problem, whose equa-
tion does not include first order terms, by the solution of a suitable
homogeneous Dirichlet problem with spherical symmetrical data; af-
terwards this method has been fitted to more general cases: see
Alvino-Trombetti [5, 6], Bandle [9], Chiti [14], P. L. Lions [27],
Talenti [32], Alvino-Lions-Trombetti [1, 3, 4], Ferone-Posteraro [19],
Giarruso-Trombetti [22], Trombetti-Vasques [33]; in particular
Alvino-Lions-Trombetti [3] establish comparison results concerning
equations with all lower terms.

Comparison results for solution to variational inequalities were
first established by Bandle-Mossino [10], who studied an obstacle
problem with an elliptic operator without fist order terms and with
the obstacle vanishing on the boundary (i.e. the obstacle ¢» € Hg ().
Results for a complete second order elliptic inequality have been
achieved by Alvino-Matarasso-Trombetti [7]. Other results have
been established by Posteraro-Volpicelli [30]. In the mentioned pa-
pers the authors always suppose that the obstacle vanishes on the
boundary; with this hypothesis they can choose in the variational
inequality, as test functions, the two functions u + (u — ), obtain-
ing from the inequality an equality and then applaying the methods
used for the equations. Besides the comparison results, they obtain
in a particular case a lower bound for the measure of the coincidence
set.

The obstacle problem, when the obstacle does not vanish on the
boundary, has been studied by Maderna-Salsa [28] for a variational
inequality containing only second order terms, with the obstacle con-
stant on the boundary and with regular data. By a replacement of
the unknown function, they first obtain the constant obstacle prob-
lem

ve K, (YveK) /Q(a grad ulgrad (v — u)) > /Qf(v —u),

where
K={ve H}Q);v<1};

then, introducing a function @ (the contact funtion) depending only
on the measure of Q and on f, they found that the unique solution
of the equation ®(A) = 1 is an upper bound of the measure of the
coincidence set.
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For a parabolic obstacle problem see Diaz-Mossino [18].

2. Hypothesis and results.

Let Q an open boundet set of RN (N > 2), with regular bound-
ary. If Sis a (Lebesque) measurable subset of RV, | S| is the measure
of S. If r > 0 and @ € RV, B(a,r) (resp. B'(a,r)) is the open (resp.
closed) ball of RV centered in @ and with radius r. Vy is |B(0,1)].
If ¢ : Q — R is measurable the (decreasing) distribution function
of ¢ is the function

po : R —[0,|Q]t — [{z € Q5 6(z) > t}];
the decreasing rearrangement of ¢ is the function
b 1[0, 190] — R, s — sup({t € R uglt) > s)

For simplicty, we put ¢} for the decreasing rearrangement (¢%). of
the positive part ¢ of ¢.

For an exhaustive statement of the proprieties of rearrangements,
see [2], [9], [15], [23], [24], [32], [29] for exemple.

We recall that if ¢ € L'(Q), then ¢. € L'([0,]9]]) and that

14|
[r<[ 1. (1
A 0

for a measurable subset A of Q. As a conseguence of Polya-Szego
theorem, we recall that if ¢ € H}(Q) and if ¢ > 0, then ¢, €
C(10,1[]), with ¢.(|€2]) = 0.

Let L the differential second order operator
L:H)(Q) — H'(Q),v — —div (agrad v) + (b|grad v) + cv,

where @ = (a;;)ij=1.2..N, (bi)i=1,2,v, and where we suppose the
coeflicients a;;, b;, c € L*° () and satisfying the following conditions

(vh € RY) (a(z)h|h) > M|, M >0 (2)

b(z)|< B, B2>0 (3)
c(z)>0 (4)
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for almost all z € Q.
Let £ > 0 the costant we choose as obstacle and let

K={ve Hy(Q);v<k} (5)

the related closed, convex subset of H}(Q).
Let u € K a solution of the variational inequality

(Vv € K) /Q(a grad u|grad (v — u)) + /Q(b|grad u)(v—u)+
—I—/ch(v —u) > /Qf(v —u), (6)

with f € L?(Q), such that f* # 0.

Let I the coincidence set of u.

We need some regularity condition on wu.

We suppose u € C'(Q); for this, it is sufficient to suppose the
coefficients a;; € C1(), the bilinear form associated to L coercive
and f € LP(Q) with p > N [12].

We also suppose that 97 is a regular hypersurface of RY; this
condition is more delicate; see [25], [13], [20], [8] for exemple, for this
topic.

From the above hypotheses it follows at once:

(Yo € H} () /Q(agradu|gradv)—}—/Q(b|gradu)v:/Qi (f—cu)v.
(7)

In reality, as the reader will be able to observe, we need the above
regularity conditions only in order that the equality in (7) is true for
particular test functions.

So we could replace these hypotheses with (7).

The basic result of the paper, of which the other ones are direct
consequence, is the following inequality on u]:

2 12| 1
uf (s) < N_QVNNM_lf oN " 2exp (VNNM_lBU%) :
o _ L
: ( FX(r = 1)) exp (—VNNM‘lBr%) dr) do (8)
1|

for every s €]|1], €]
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This inequality leads on the consideration of the following func-
tions:

U {(t,A) € [0,]]] x

—

0,|;t> A} — R, t —

=

_2 €2 _1
N_ZVNNM_I/ oN 2exp <‘/NNM_1BU%)-
t

L
(1 20— New (it umiaE) i) ao,
and
$:0,|Q] — R, t — W(t,1) .

We call @ contact function. For B = 0, ® is the function consid-
erated in [28].
As a direct consequence of (8) we obtain

k > sup(®) = [I] =0 and k< sup(®) = |I| <@ (k).

From this, we give a sufficient condition for [I| = 0 in terms of
L? norms of f*.

We compare u} with the decreasing rearrangements of the solu-
tions of homogeneous Dirichlet problems with spherical symmetrical
data.

Lastly we extend the results to an obstacle problem where the
obstacle is constant only on the boundary of €.

3. An inequality on u].

The inequalty stated by the following theorem is the base for all
other results. In the proof we applay to this case the methods of
Talenti [32] and Alvino-Lions-Trombetti [4].

THEOREM 1. Let u solution of (6), where K is fized by (5); let
u satisfy (7); then for every s €]|1|,|Q2|] we have

2

_2 2] _1
ut(s) < N‘QVNNM_lf o ¥ 2 exp (VNNM—lBa%) :

. ( |; FE(r = |1]) exp <—VJ\_,%M_1BT%> dr) do . (9)
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Proof. Let t €]0, k[. We have (u —t)* € H}(Q). Choosing in (7)
v=(u—t)*, we find

/ (agrad ulgrad u) + / (blgrad u)(u —t) +
Qu>t Qu>t

+ cu(u—t):/ f-(u=1t).
Q—Tu>t Q—Tu>t

Then for almost all ¢ €]0, k[ we have

d
S / (agrad u|grad u) =
dt Qu>t

= —/ (blgrad u) — / cu + f. (10)
Qu>t Q—Tu>t Q—Tu>t

From the ellipticy condition (2), using the incremental ratios, we
obtain

d d
—M—/ lgrad u|* < ——/ (agrad ulgrad u) . (11)
dt Qu>t dt Qu>t

for almost all ¢ €]0, &[.
Now we find upper bounds for the terms of the second side of
(10).

From (3), using the coarea fomula [21], we find
—/ (blgrad u) < B/ |grad u| <
Qu>t Qu>t

k d
<B/ <——/ radu)ds. 12
- ds Jouss & | (12)

Using the incremental ratios, by Schwarz inequality, we find

1
d d 2
=  leradul < (—% / |gradu|2) (=it ()

Then from (12) we find

—/ (blgrad u) <
Qu>t

k d 9 % , 1
<B [ (=5 [ leaduP) (<l ()Eds. (4)
t ds Qu>s

I
—_
—
w
~—
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By coarea formula [21] we find

d
ds
for almost all s €]0, k[, where Po(u > s) (resp. Pgn(u > s) is De
Giorgi perimeter of {z € Q;u(z) > s} relative to Q (resp. RY).
By the isoperimetric inequality we have

/ lgrad u| ds = Po(u > s) = Pgn (u > s) (15)
Qu>s

NV (1 ()% < P (u > 5) (16)

for almost all s €]0, &[.
From (13), (15), (16) we find

1

<_dii /Qws |gradu|2) " (i (9))

=
I

W=
~—~~~
—_
-
~—

NV (1 ()

and therefore

1
d 2
(5 [ teradu? ) (- (s)
_1 d
<NV G ()2 (i (90) (55 [ Jerad )
S JQu>s

for almost all s €]0, k.
Then from (14) we have

N

<

_L k X
_/97u>t(b|gmdu) < N—lvNNB/t (qu+ (8))W_1(_,ui¢+ (S))

. <—di;/97u>s |grad u|2) ds . (18)

By (1) we have

ot (011
[ooorsf e A (19)
Q—Tu>t Q—Tu>t 0

From (10), by (11), (18), (19) and (4), we find
1
_% fQ,u>t grad u|? < N_IVN NM-LIB.
i_
S ()77 (=1 (5))-

d pot ()=
<__/ |gradu|2) d.s—I—M_1/ ' fr (20)
ds Qu>s 0
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for almost all ¢ €]0, &[.
Applying to (20) Gronwall lemma, we find

d Hot (8) =]

g | leradu < vt [ £
dt Qu>t 0

1

_1 _1
+N"'Wy ¥ M*Bexp <VNNM‘1B(,uu+ (t))w) :
ot () [ o= 1
/ i (/ M_lfj) ov! exp (—VN NM_IBU%) do (21)
1 0

for almost all ¢ €]0, k[.
Setting in the last integral r = ¢ — |I| and integrating by parts,

(21) becomes

pot ()= 1 !
/ I (r) exp <—VNNM_1B(7‘—|—|I|)F) dr .
0

*

=

1
—%/ﬂ g lgrad u|* < M~'exp (V_NZW_lB(,our (t))

Multiplying by —u! , (t) and using (17) we find

=

) .

Lot (1) =1 _1 1
([ o e (vt 1) ar) (ke 0)

2 _ L
N2V (gt ())2F < M~V exp <VN NM B (s (1))

(22)
for almost all ¢ €]0, &[.
Hence we have
_2 1
—(uf)(s) < N_QVNNZM_IS%_2 exp (VN NM_IBS%) .
s 1
. 0 5 (r = |I]) exp <_VN NM_IBT%> dr (23)

for almost all s €]|1], |€]].
By ut € HJ(2) we have uf € C(]0,|Q]) and u} (|Q2]) = 0.
From (23), integrating on [s, |€2|], we obtain (9).
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Remark 1. We remark that in regular hypotheses, for exemple
if a;; € CY (), w € C*Q—1) and I is a regular hypersurface, (9)
may be obtained in a faster manner. In fact, setting for all ¢ € [0, k]

E,={z € Qu(z) > t},

on Fy—1I we have L(u) = f. For almost all ¢ € [0, k], OF} is a regular
hypersurface of RY; so, integrating on E;— I and using gradu = 0
on 01, we find

grad u

agradu dH—I—/ blgrad u) + cu = ,
/GEt( & ||g1“ad‘u|) Et( e ) Bo—1 Et*If

where H is the canonic measure on 9F;.
From this we find

M/ |grad u| dH §/
Ok 0

For almost all s € [t, k], we have

Bt (B)=1

1
Fi(r)dr+ B /E gradu| . (24)

1
U I ——T
it (5) /3]55 |grad u| !

so we find

k
/ lgrad u| = / Prr(u > s)ds <
jo t

< /tk </3E lgrad ul dH)% (=i 4 (5))3 ds . (25)

By the isoperimetric inequality we have

1
NV (4 (5)) 7% < Prov(u > 5)

-

2

< ([, terdulant ) (=4 s)
(26

) we find

B =

(26)

From (25) and

1 rk
/ lgradu| < N7V ¥ / (/ lgrad u| dH)
Ion t E,
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1

(tat (8)) ¥ 71 (=4t (5)) ds (27)
So from (24) and (27) we find

Hot (=11
M/ lgrad u| dH < / fi(r)dr+
oFEy 0

NTEB [ ) ([ Jeradulan)
(—pus)(s) ds, (28)

Applying to (28) Gronwall lemma, we find
_1
M/ lgrad u| dH < M~ exp <V NM T B (g4 (t))%) .
OF;
th+ (8)= 1] T )
/ fF(r)exp (—VNNM_ B(r—l—|]|)ﬁ> dr (29)
0

Multiplying by —p!; (t) and using again the isoperimetric in-
equality from (29) we find (22).

4. Consequences.

The results of this sections express relations between k and |I|;
we find in particular an upper bound for |I|.

The results are generalisations of those of [28], that we obtain for
B=0.

CoROLLARY 1. Let |I| # 0; then we have:
el

_ 2 _ L
k< N2VYM™ [ g% 2exp <VN NM—lBa%) :
I

. ( |Ia| fH(r = |1]) exp (—V]\_,%M_IBT%) dr) do . (30)

Proof. By i+ (|I|—) = k and continuity of uf at |I|, it follows
that uf (|7|) = k; then, choosing in (9) s = |I|, we obtain (30).
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If we consider in the second side of (30) | /] as a variable, we obtain
the function ®, that we have called contact funtion [28]. Hence
relation (30) becomes

k< a(1]). (31)

From the hypothesis that f* # 0, it follows that the contact
function is strictly decreasing.
In fact for every t €]0, |Q]], setting

Dy ={(0,8);t<o<|Q,0<s< o1},

we have
1
B(t) = N2V ¥ M- // oNT exp< ];NM—IBU%) 7 (s)-
Dy

-exp( V NM 1B (s+1) %) dods ;
let /.t €]0,|Q], # < t; we have D; C Dyj; so we have
_2 1
D(t') - d(t) > N_QVNN]W_1 // o2 exp <VNNM_1BU%) .
Dy
i (s):
1 L
(oxp (Vi M B+ 08 ) —oxp (M BV F (s 4 0% )

dods > 0 ;

since f* # 0, the integral is not 0; so we have ®(¢') — ®(¢) > 0; this
proves that @ is strictly decreasing.

Assumed ® :]0,|Q|] — [0,sup(®)[, we can consider ®~1.

From (31) we obtain the following corollary.

COROLLARY 2. We have:
1. k > sup(®) = |I| = 0;

2. k < sup(®) = |I| < &7 (k).

Proof. Let k > sup(®); suppose |I| # 0; since ¢ is strictly
decreasing, by (31) we have

F< @ (/1)) < lim B(1) = sup(®) ;



320 CARLO RAVAGLIA

so we have k < sup(®), contradiction. This proves (1).

Let k& < sup(®). If [I| = 0, we have |I| < ®~!(k). Supposed
[I] # 0, by (31) we have k < ®(|I]), and then |I| < ®~!(k). This
proves (2).

As in [28], by Holder inequality, the condition £ > sup(®), may
be easily obtained for p > % as conseguence of inequalities on LP
norms of fy.

COROLLARY 3. Let p > %; let fy € LP(Q); let
2 _1 1 Np
I f+llp < ENVF Mp~'(2p — N) exp (-vN NM‘1B|Q|F) Q|77 ;

then we have |I| = 0.

Remark 2. The second side of (9) may be related to the solution
of a homogeneous Dirichlet problem with spherical symmetrical data.
For this, we set

R=Y/Q/Vx and Q=B(0,R),

so that Q| = |Q].
For every A € [0, |2]], we set

\I}(/\vA) ‘/N|$|N < A

U,\ZQ—>R7$—>{ \I’(‘/N|$|N7/\) /\<‘/N|$|N<R

and

0 Vylz|V <A

P = Ror = { JFWnlaly =2 A< Valal¥ < R

For every A € [0, |Q|] we have Uy € H}(Q) and Uy is the solution
of the homogeneous Dirichlet problem

(Vv € HE(Q)) M /Q (grad U |grad v)+
—|—B/S~2(|::Z—||g1‘adUA(w))v(x) dm:/fzf/\v

[32].
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Furthermore the decreasing rearrangement of Uy is related to @;
precisely we have

@A) 0<s<A
UMS)_{@(s) AN<s< |9

As Uy € HQ(Q), we also note that, for A # 0, U, is solution of
the constant obstacle problem with spherical symmetrical data

K = {ve H&(Q);v < Ci)(/\)} ,
(Vv € K) M/Q(grad Ulgrad (v — U))+
+B Jo(lgrad U(z))(v(z) — U(z)) dz = fgg:(v - U),

where gy € L2([0, 121]), gy > 0, g2(2) = f(x) for A < Vile|V < R,
gx(z) arbitrary for Valz|V < A

As ft # 0, the coincidence set of U, is B'(0, ¥/A/Vx), whose
measure in A.

It is now possible to interpret (9) as an inequality between de-
creasing rearrangements of solutions of constant obstacle problems.

In fact for A = |I|, (9) gives at once

(Vs €]0, Q] uZ (5) < Uprja(s) -

We remark that we compare the decreasing rearrangements of
the solutions of two constant obstacle problems with different value
of the constants.

We have
0 <A <A< Q= (Vs €]0,]9]) Unyu(s) < Unyu(s) .

In fact, let s € [Ag,[€]]; let us prove Uy, (s) < Uy, «(s) i. e.

o 1
/ exp <_VN NM_IBT%) F(r =) dr >
A

1

o 1
> / exp <—V]\7NM_IBT%> FE(r=22)dr (32)
A

2

for every o € [s,]Q]]; let

o 1
¥ :]0,0[— R, A — / exp (—VN NM_IBT%) frr—XNdr;
A
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from
o—A 1 1
P(A) :/0 exp <—V]\_,ﬁM_lB(r’—}—/\)W) ey dr’

it follows at once that 1 is decreasing; this means (32). Since U}
(resp. Uy,x) is equal to ®(Aq) (resp. ®(A2)) on ]0, Aq] (resp. 10, Aq)),
we have Uy, (s) < Uy, «(s) for all s €]0,|€]].

So for 0 < X < |I| we have

(Vs €]0,1Q]]) uf(s) < Un(s) -
In particular we have

(Vs €10, Q) ui (s) < Uox(s) -

Remark 3. We may extend the previous results to an obstacle
problem where the obstacle is constant only on the boundary of €2.

Let 1) : @ — R such that 1 is continuous, ¥ — k € H(Q) and
L(¢ — k) € L*(Q); let

K ={ve H (Q);v < )}

the related closed, convex subset of H}(Q).

Let @ € K a solution of the variational inequality obtained from
(6) replacing K with K. Denoting by [ its coincidence set, we sup-
pose

(Vv € HL(Q) /Q (agrad (u — ¢ + k)|grad v)+

Q—1

+ [ (lerad (= v+ )0 = [ (= L@=k) = cuo.
Let
fo=f—-L{—k) and w=u—10+k.

Then ug € K and ug is solution of the variational inequality
obtained from (6) replacing f with fy; moreover % and ug have the
same coincidence set.

So, denoted ® the contact function corresponding to f"’, we have



1

CONSTANT OBSTACLE PROBLEM etc. 323

1 #£0= k< o)

2. k > sup(®) = |I| = 0;

3. k <sup® = |I] < d71(k).

(1

2]

[3]

[4]
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