ON QUOTIENTS OF HOPF FIBRATIONS (*)

by Bonaventure Loo (in Singapore) and Alberto Verjovsky (in Villeneuve D'Ascq)(**)

Sommario. - In questo articolo dimostriamo l'impossibilità di ottenere una sottofibrazione in cerchi del fibrato di Hopf su S⁸.

Summary. - In this paper we prove the impossibility of obtaining a circle subfibration of the Hopf fibration over S^8 .

Consider the following Hopf fibrations:

(i)
$$S^1 \hookrightarrow S^{15} \to \mathbb{CP}^7$$
,

(ii)
$$S^3 \hookrightarrow S^{15} \to \mathbb{HP}^3$$
,

(iii)
$$S^7 \hookrightarrow S^{15} \to S^8$$
,

where \mathbb{C} and \mathbb{H} are the complex and quaternion division algebras respectively, and \mathbb{P}^r denotes projective r-space.

The twistor fibration of \mathbb{HP}^3 is obtained via a quotient of 2 Hopf maps (items (i) and (ii) above):

^(*) Pervenuto in Redazione il 17 giugno 1994.

^(**) Indirizzi degli Autori: B. Loo: Mathematics Department, National University of Singapore, Lower Kent Ridge Road, Singapore 0511, (Singapore), E-mail address: bloo@math.nus.sg; A. Verjovsky: UFR de Mathématiques, Université de Sciences et Tecnologies de Lille, Villeneuve D'Ascq (Francia), E-mail address: alberto@gat.univ-lille1.fr

One could ask whether other quotients exist, for example,

- (a) the quotient of (iii) by S^1 or
- (b) the quotient of (iii) by S^3 .

However, the lack of associativity of the octonions precludes the possibility of such quotients. Nevertheless, one could ask whether there exist fibrations of the form $\mathbb{CP}^3 \hookrightarrow \mathbb{CP}^7 \to S^8$ or $\mathbb{HP}^1 \hookrightarrow \mathbb{HP}^3 \to S^8$.

Schultz proved that the homotopy analog of b) is not possible.

THEOREM (SCHULTZ [Sc]). There does not exist a Hurewicz fibration $F \hookrightarrow E \to B$ fibre homotopy equivalent to $\mathbb{HP}^1 \hookrightarrow \mathbb{HP}^3 \to S^8$.

It was shown in [LV] that there are no PL-bundles of the form $\mathbb{CP}_h^3 \hookrightarrow \mathbb{CP}_h^7 \to S^8$ where \mathbb{CP}_h^k denotes a PL-manifold homotopy equivalent to \mathbb{CP}_h^k . It was stated at the end of [LV] that the homotopy analog of a) does not exist. In [U], Ucci showed that there exists no Hurewicz fibration of the form $\mathbb{CP}^3 \hookrightarrow \mathbb{CP}^7 \to S^8$. However, as stated, this was not the strongest possible result. Let \mathfrak{HCP}^n , \mathfrak{HCaP}^2 and S_h^n denote spaces homotopy equivalent to complex projective n-space \mathbb{CP}^n , the Cayley plane \mathbb{CaP}^2 and S^n respectively. In this paper we adapt the proof of Jack Ucci [U] to show:

Theorem. There does not exist a Hurewicz fibration fibre homotopy equivalent to

$$\mathfrak{HCP}^3 \hookrightarrow \mathfrak{HCP}^7 \to S_h^8$$
.

An immediate corollary of this is the following:

Corollary. The Hopf fibration $\pi: S^{15} \to S^8$ admits no S^1 -subfibration arising from a free continuous S^1 -action.

This corollary generalizes the corresponding corollary of [LV] which considered free $PL\ S^1$ -actions.

Proof of Corollary. The orbit space of a free continuous S^1 -action on S^{2n+1} is a homotopy complex projective space \mathfrak{HCP}^n . Thus, if such an S^1 -subfibration were to exist, taking a quotient by the S^1 -action would give us a Hurewicz fibration of the form $\mathfrak{HCP}^3 \hookrightarrow \mathfrak{HCP}^7 \to S^8$, contradicting the Theorem.

Proof of Theorem. Recall that \mathbb{CP}^7 is 14-classifying for S^1 -bundles. Let ξ denote the bundle $S^1 \hookrightarrow S^{15} \to \mathbb{CP}^7$. Let $\chi: \mathfrak{HCP}^7 \to \mathbb{CP}^7$ be a homotopy equivalence. Then $\chi^*\xi$ is an S^1 -bundle with total space a homotopy 15-sphere, S_h^{15} . We thus have an S^1 -action on S_h^{15} with orbit space \mathfrak{HCP}^7 :

$$S^1 \hookrightarrow S_h^{15} \xrightarrow{g} \mathfrak{HCP}^7.$$

Now suppose that there exists a Hurewicz fibration $\mathfrak{ICP}^3 \hookrightarrow \mathfrak{ICP}^7 \to S_h^8$. We then have the following diagram:

$$S^{1}$$

$$\downarrow$$

$$S_{h}^{15}$$

$$\downarrow^{\pi}$$

$$\mathfrak{HCP}^{3} \longrightarrow \mathfrak{HCP}^{7} \stackrel{g}{\longrightarrow} S_{h}^{8}.$$

Let $h: S_h^{15} \to S_h^8$ be defined by the composition $h:= g \circ \pi$. This gives us the following diagram:

$$\mathfrak{HCP}^7 \longrightarrow \mathfrak{HCP}^7 \cup_{\pi} e^{16} \simeq \mathfrak{HCP}^8$$

$$\downarrow^g \qquad \qquad \downarrow^{G:=g \cup_{\pi} \mathrm{id}}$$

$$S_h^8 \longrightarrow S_h^8 \cup_h e^{16} \simeq \mathfrak{HCaP}^2.$$

Let $u \in H^8(\mathfrak{H}^2(\mathbb{C}^2;\mathbb{Z}))$ denote a generator of the cohomology ring $H^*(\mathfrak{H}^2(\mathbb{C}^2;\mathbb{Z}))$. Let $v := u^2 \in H^{16}(\mathfrak{H}^2(\mathbb{C}^2;\mathbb{Z}))$. Observe that $G^*v = x^8$ where $x \in H^2(\mathfrak{H}^2;\mathbb{Z})$ is a generator of $H^*(\mathfrak{H}^2;\mathbb{Z})$.

Let p be an odd prime and consider the Steenrod cohomology operation

$$P^{i}: H^{q}(Y; \mathbb{Z}_{p}) \to H^{q+2i(p-1)}(Y; \mathbb{Z}_{p}) \quad i \geq 0, q \geq 0.$$

In particular, we have $P^1: H^q(Y; \mathbb{Z}_3) \to H^{q+4}(Y; \mathbb{Z}_3)$. We will let [y] denote the reduction mod 3 of y for any $y \in H^q(Y; \mathbb{Z})$. Thus for $x \in H^2(\mathfrak{H}^2; \mathbb{Z})$ as above, we obtain $P^1[x] = [x^3]$. Since the cohomology ring of the Cayley plane is generated by an element of dimension 8, P^1 acts trivially on $H^*(\mathfrak{H}^2; \mathbb{Z}_3)$. From the commutative diagram

$$H^{8}(\mathfrak{H}^{2}\mathbb{C}^{2};\mathbb{Z}_{3}) \xrightarrow{P^{1}} H^{12}(\mathfrak{H}^{2}\mathbb{C}^{2};\mathbb{Z}_{3})$$

$$\downarrow^{G^{*}} \qquad \qquad \downarrow^{G^{*}}$$

$$H^{8}(\mathfrak{H}^{2}\mathbb{C}^{8};\mathbb{Z}_{3}) \xrightarrow{P^{1}} H^{12}(\mathfrak{H}^{2}\mathbb{C}^{8};\mathbb{Z}_{3})$$

we see that $P^1G^*[u] = G^*P^1[u] = 0$. Now, $G^*[u] = [\lambda x^4]$ for some $\lambda \in \mathbb{Z}$ since x is a generator of the cohomology ring of \mathfrak{HCP}^8 . Thus,

$$\begin{array}{lll} 0 & = & P^1G^*[u] = P^1([\lambda x^4]) = [\lambda P^1[x^4]] \\ & = & [\lambda P^1([x^2] \cdot [x^2])] = [\lambda (2x^2)P^1[x^2]] & \text{by the Cartan formula} \\ & = & [\lambda (2x^2)P^1([x] \cdot [x])] = [\lambda (2x^2)(2xP^1[x])] & \text{by the Cartan formula} \\ & = & [4\lambda x^3 \cdot x^3] & \text{by item (ii) above} \\ & = & [\lambda x^6] = [\lambda][x^6], \end{array}$$

and hence $\lambda = 3k$ for some integer k. In other words, $G^*u = 3kx^4$. We obtain

$$0 \neq x^8 = G^*v = G^*u^2 = (G^*u)^2 = 9k^2x^8,$$

 \Diamond

a contradiction. This proves the theorem.

Remark. Since the Calabi-Hopf-Penrose fibration $\mathbb{CP}^1 \hookrightarrow \mathbb{CP}^3 \xrightarrow{g} S^4$ does exist, we shall indicate why the preceding argument cannot be extended to this case. We can mimic the previous argument. Let

 $\pi:S^7\to\mathbb{CP}^3$ denote the Hopf fibration, and let $h:=g\circ\pi.$ We have the commutative diagram

$$\mathbb{CP}^3 \longrightarrow \mathbb{CP}^3 \cup_{\pi} e^8 \simeq \mathbb{CP}^4$$

$$\downarrow g \qquad \qquad \downarrow_{G:=g \cup_{\pi} \mathrm{id}}$$

$$S^4 \longrightarrow S^4 \cup_h e^8 \simeq \mathbb{HP}^2.$$

Let $u \in H^4(\mathbb{HP}^2;\mathbb{Z})$ be a generator of the cohomology ring of \mathbb{HP}^2 , and let $v=u^2$. Then as before, we have $G^*v=x^4$ where x is a generator of the cohomology ring of \mathbb{CP}^4 . Using \mathbb{Z}_2 coefficients, observe that $P^1:H^q(Y;\mathbb{Z}_2)\to H^{q+2}(Y;\mathbb{Z}_2)$ and letting [y] denote the mod 2 reduction of a cocycle y, we have $P^1[x]=x^2$. Again, we see that P^1 acts trivially on $H^*(\mathbb{HP}^2;\mathbb{Z}_2)$. From the commutative diagram

$$H^{4}(\mathbb{HP}^{2}; \mathbb{Z}_{2}) \xrightarrow{P^{1}} H^{6}(\mathbb{HP}^{2}; \mathbb{Z}_{2})$$

$$\downarrow^{G^{*}} \qquad \qquad \downarrow^{G^{*}}$$

$$H^{4}(\mathbb{CP}^{4}; \mathbb{Z}_{2}) \xrightarrow{P^{1}} H^{6}(\mathbb{CP}^{4}; \mathbb{Z}_{2})$$

we have $P^1G^*[u] = G^*P^1[u] = 0$. Since $G^*[u] = \lambda x^2$ and $P^1[x^2] = [2x^3] \equiv 0$, we get no information and hence cannot obtain a contradiction as before.

A corollary of the Theorem gives us a weak version of Schultz's theorem:

COROLLARY. There does not exist a Hurewicz fibration of the form $\mathbb{HP}^1 \hookrightarrow \mathbb{HP}^3 \to S^8$ where \mathbb{HP}^3 denotes a standard quaternion projective 3-space.

Proof. First, recall that we have the quaternionic twistor fibration of the quaternion-Kähler manifold \mathbb{HP}^3 :

$$\mathbb{CP}^1 \longrightarrow \mathbb{CP}^7 \stackrel{\pi}{\longrightarrow} \mathbb{HP}^3.$$

Suppose there exists a Hurewicz fibration $f: \mathbb{HP}^3 \to S^8$. Then, by composition, we obtain a Hurewicz fibration

$$f \circ \pi : \mathbb{CP}^7 \to \mathbb{HP}^3 \to S^8$$
,

contradicting the theorem.

Note that this argument made use of the quaternionic twistor fibration of \mathbb{HP}^3 in order to obtain the map f from \mathbb{CP}^7 to \mathbb{HP}^3 . It is not clear that given a generic homotopy quaternion projective 3-space \mathfrak{HP}^3 , there exists a Hurewicz fibration $g:\mathfrak{HCP}^7\to\mathfrak{HP}^3$. If such a map does exist, then the above proof could be used to prove Schultz's Theorem.

Remarks.

Recall from [LV] that a complex 4-plane bundle over S^8 with structure group U(4) has Euler class which is a multiple of six times the generator of $H^8(S^8;\mathbb{Z})$. This fact followed from Bott periodicity. A question to ponder over is "what is the relation between the number 3 (from the \mathbb{Z}_3 coefficients in the proof of the main theorem) and the number 6".

References

- [LV] Loo B. and VERJOVSKY A., The Hopf fibration over S⁸ admits no S¹-subfibration, Topology **31** (1992), 239-254.
- [Sc] Schultz R., Compact fiberings of homogeneous spaces. I, Compositio Math. 43 (1981), 181-215.
- [U] UCCI J., On the nonexistence of Riemannian submersions from \mathbb{CP}^7 and \mathbb{QP}^3 , Proc. Amer. Math. Soc. 88 (1983), 698-700.