RIEMANNIAN MANIFOLDS WITH SPECIAL
CURVATURE TENSOR (*)

by FaBIO PODESTA (in Parma)
and FRANCO TRICERRI { (in Firenze)(**)

SOMMARIO. - Lo scopo di questo lavoro ¢ studiare varieta Riemanniane a
curvatura omogenea il cui tensore di curvatura é della forma aRgs»+bK |
a,b € R, dove K é semisimmetrico, 1.e. K- K = 0, e di Finstein.
Quando a > 0, si prova che la varieta deve avere curvatura sezionale
costante, mentre il caso a < 0 rimane aperto.

SUMMARY. - This paper is dealing with the problem of characterizing those
curvature homogeneous Riemannian manifolds whose Riemannian cur-
vature tensor is of the form aRgn +bK, a,b € R, where K is semisym-
metric, i.e. K- K =0, and Einsteinian. When a > 0, it is shown that
the manifold must be of constant sectional curvature, while the case
a < 0 still remains open.

0. Introduction.

The main purpose of this note is to continue the study of Rie-
mannian manifolds having a special assigned curvature tensor (see,

for example, [KP], [KTV], [TV1], [TV2]).
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An n-dimensional Riemannian manifold (M, g) is said to be cur-
vature homogenous (see [TV1]) if, for each p,q € M, there exists a
linear isometry I : T,M — T, M such that

F*R, =R,

where R denotes the curvature tensor of (M, g). This is also equiva-
lent to saying that 2, and R, have the same components with respect
to suitable orthonormal bases in T,M and T,M. A homogeneous
Riemannian manifold is clearly curvature homogeneous, but there
are many examples of curvature homogeneous Riemannian mani-
folds which are not even locally homogeneous (see [KTV] and [TV1]
for more details and further references). To give an alternative de-
scription of curvature homogeneity, we consider the principal fibre
bundle O(M) of orthonormal frames on M; the curvature tensor R
may be viewed as a C* map

R:O(M) = R(V)

where (V') denotes the space of algebraic curvature tensors on an
n-dimensional vector space V. The map R is O(n)-equivariant in
the sense that R(ua) = a ' R(u) for all u € O(M) and all a € O(n),
the orthogonal group acting on O(M) and R(V') in a standard way.
It turns out that curvature homogeneity is actually equivalent to
saying that R(O(M)) is contained in a single O(n)-orbit in R(V).
Moreover, given any algebraic curvature tensor R,, we will say that
(M, g) has a curvature tensor of type R, if R(O(M)) C O(n) - R,
that is, if the image of the map R is contained in the O(n)-orbit
through R,. Recently, Kowalski and Priifer ([KP]) have constructed
a family of algebraic curvature tensors in dimension four which do
not belong to any curvature homogeneous space.

One starting point for the problem we will be dealing with in this
paper is the following result proved in [TV2]:

THEOREM. Let (M,g,J) be an almost Hermitian manifold with
real dimension 2n > 6 and Riemannian curvature tensor of the form

R = fRS2n + hR@ﬂm

where f and h are C* functions with h not identically zero. Then
M is a complex space form.



RIEMANNIAN MANIFOLDS WITH SPECIAL etc. 97

Remark. If 2n = 4 the previous theorem also holds when & is
supposed to be constant ( see [TV2]). But if not, counterexamples
are given in [Ol].

In this note we give some first results about characterizing Rie-
mannian curvature homogeneous manifolds whose curvature tensor
is of type

R, =aRgn + bK, (%)

where a, b are real numbers and K, is a symmetric curvature tensor,
that is, satisfies K,- K, = 0. We recall here that, by a classical theo-
rem due to E. Cartan (see [He]), each symmetric algebraic curvature
tensor is the curvature tensor of a Riemannian symmetric space.

As we will see, the problem of giving a full classification of cur-
vature homogeneous spaces having curvature of type (%) seems to
be not trivial, at least when the curvature K, corresponds to a re-
ducible Riemannian symmetric space. Indeed, we have the following
contrasting examples:

ExamMPLE 1. In [Ts], Tsukada gave an explicit example of a
four-dimensional curvature homogeneous manifold (M, g) whose cur-
vature tensor is of type

R, =—Rg1 + Rp2ys2.

The manifold (M, g) turns out to be not locally homogeneous. More-
over, it can be proved (see [KTV]) that there is no homogeneous
model space, that is, there does not exist any homogeneous space
(M, §) with R(O(M)) C R(O(M)), where R is the curvature map
for (M, g).

ExampLE 2. Cartan isoparametric hypersurfaces (M,g) with
three distinct principal curvatures in the space form S*(c) of constant
curvature ¢ > 0 provide homogeneous examples whose curvature is
of type (*). Indeed, it is easy to see that, if —X, 0, A denote the three
different principal curvatures, with A = v/3¢, the curvature tensor of
(M, g) is of type

Ry, =4Rgs + 4X\ Ry s2.



98 FABIO PODESTA and FRANCO TRICERRI

Our main result deals with the case when the Ricci tensor of
(M, g) is parallel and gives a partial classification in this case.

THEOREM. Let (M, g) be a Ricci parallel, curvature homogeneous
Riemannian manifold whose curvature is of type (x). Then the con-
stant a is nonpositive or (M, g) has constant sectional curvature.

Remark. Note that (M, g) is Ricci parallel if and only if it is
locally isometric to the product of Einstein spaces. In particular,
this hypothesis of the Theorem is satisfied if K, is the curvature
tensor of an irreducible or, more generally, an Einstein symmetric
space. In fact, in such a case (M, g) itself is Einstein.

Up to now, the authors were not able to find any example of a
manifold satisfying the conditions of the Theorem with a negative a
and not of constant sectional curvature.

1. Proof of the Theorem.

We may suppose that R = aRgn +bK, with b # 0, otherwise our
claim follows immediately. In such a case, since (M, g) is curvature
homogeneous, M has a G-structure PP, where G is the Lie subgroup

of O(n) defined by
G={a€O(n)|aK,=K,}
(see [KTV]). Then K, induces a tensor field K on M, defined by
1, -1

Ky (z,y,z,w) = K,(u 'z, u by, u™ 2, u™w)

where u is an element of the reduced bundle P belonging to the fibre
over the point p € M. Hence the Riemann curvature tensor R of
(M, g) can be written as

R =aR’°+bK,
where R° is the tensor field on M given by

R(z,y,z,w) = g(z,2)g(y,w) — g(z,w)g(y, z).
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Note that
VR =bVK

where V denotes the Levi Civita connection of (M,g). It follows
that VK = %VR satisfies the second Bianchi identity.

Moreover, by the curvature homogeneity, the length of the tensor
field K is constant on the whole of M, so that, if A denotes the
Laplace operator on (M, g), we have

1 . . . .
3 A(IKND) = IVK?+ (Vi Kijk) Kijrn = 0 (2.1)

where repeated indices mean summation.
Now, using the second Bianchi identity and the Ricci commuta-
tion formulas, we have

(V2. Kijk) Kijr = —(Vganmikz+meijkz)K¢jkz
= [-V5.Knir

~V2 Kimpt + (Bmj - K)mikl
H(Romi - K) jmrt | Kkt

(2.2)

Since (M, g) is Ricci parallel, also VS = 0, where S is the Ricci
tensor field of type (0,2) corresponding to K. Hence, we have

2 - 2 -
V]'mkmikl = Vimkjmkl =0.

Further, K- K = 0 yields that (2.2) may be rewritten in the following
way:

(V2 Kie) Kijn = a[(R),; - K) ikt + (R, - K) ] K

] , 2.3
= 2a(Ry,;  K)mirt Kij- (2.3)

We now write (2.3) as follows:

(Vi Kije) Kijit = 2a[Rp Kpikt + Ry i Kkt
‘|‘R;kmjl(mipl‘|‘
—I_R;lmjkrmikp]l(ijkl = 2a(n — 1)”](“2—}—

2“[_5pj5iml(mpkl + (5pm5k] - 5km5pj)l(mipl+
+(8pmbtj — O1m Op;) Kmikp) Kijrt =
= 2a[(n = 2)||KI]> = 2(|S|* = 2K mipt K ipm].
(2.4)
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The first Bianchi identity yields

Krmiplﬁripml = _”I(l z_ I(impll(ipml = _l K 2

— Koipt Kipmi,
so that (2.4) becomes

(Voo Kiji) Kijur = 2a[(n = D|[K]|* = 2]|S][).
Hence, (2.1) can be written as

1
- A
N(

K|I*) = [IVE|[* + 2a[(n - 1)|| K|

Z_olls|P1=0.  (25)

On the other hand, for an arbitrary algebraic curvature tensor K,
with Ricci tensor S,, we have

K,

2
2> = IS,12 2.6
> ——IS.II% (2.6)

with equality if and only if K, has constant sectional curvature (see,
for example, [Be]).
It follows from (2.5) and (2.6) that a has to be nonpositive unless

|| K

2
2 2
- — S

everywhere on M, that is, (M, ¢) has constant sectional curvature.

%

Note that, when a = 0, (M, ¢) is a curvature homogeneous semi-
symmetric space. These spaces have been treated thoroughly in

[BKV].
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