ONE-PARAMETER GROUPS OF
VOLUME-PRESERVING AUTOMORPHISMS OF C? (*)

by CHIARA DE FABRITIIS (in Trieste)(**)

SOMMARIO. - Si esaminano i gruppi ad un parametro nel gruppo degli
automorfismi polinomiali di C? e nel gruppo degli shears, provando
che sono coniugati a gruppi a un parametro nel gruppo degli automor-
fismi affini di C? o nel gruppo degli automorfismi elementari; da cio
st deducono risultati sul comportamento asintotico del gruppo ad un
parametro, sut suot punti periodici e sut suot punti fissi.

SUMMARY. - In this work we study the one-parameter groups in the group
of all polynomial automorphisms of C? and in the group of all shears.
We prove that any such one-parameter group is conjugated to a one-
parameter group contained either in the group of all affine automor-
phisms of C? or in the group of elementary automorphisms. This im-
plies some results on the asymptotic behaviour of the one-parameter
group, on its periodic points and on its fived points.

0. Introduction.

In this work we investigate the structure of the one-parameter
groups in AutpC?, the group of all polynomial automorphisms of
C?, and in the group of all shears, (G, introduced by J.-P. Rosay
and W. Rudin in [12]. A one-parameter group in AutpC? (G) is
a continuous homomorphism from R to AutpC? (G4), where these
last two groups are both endowed with the compact-open topology.
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In particular we will prove that, both in the case of AutpC? and
in the case of GG, each one-parameter group is conjugated to a one-
parameter group in two suitable subgroups: the subgroup of affine
automorphisms of C? and the subgroup of “elementary transforma-
tions” (to be defined in §1). This gives us the possibility to study the
asymptotic behaviour of the one-parameter group, its set of common
fixed points and other qualitative results on the behavior of its or-
bits. We will show, in particular, the lack of any chaotic phenomena,
in contrast with the discrete case of iterates (see [4]).

In the first section we give the definition of the shear group, Gy,
as well as the definition of the subgroup of all elementary automor-
phisms of the group AutpC? and Gy, and present the main results.

In the second section we prove a structure theorem both for
AutpC? and G, i.e., we prove the fact that there exist two sub-
groups A, F C AutpC? such that AutpC? is the free product of A
and F amalgamated over their intersection. Similarly for Gy, we
prove that there exist two subgroups A, 1 C G such that Gy is
the free product of A; and Fy, amalgamated over their intersection.

In the third section we prove that any one-parameter group in
AutpC? (G1) is conjugated to a one-parameter group in A or F (A
or Fjy, respectively).

1. Definitions and Main Results.

Let us first consider the group of polynomial automorphisms of
C?, which we denote by AutpC?. An elementary automorphism of
AutpC? is a transformation of the form

x az + p(y) )
1.1 — ( )
D ( y ) By+~v
where a, 8 € C*, v € C and p is a polynomial with coefficients in
C. Let A be the group of affine automorphisms of C? and E be the
group consisting of all elementary automorphisms of C2. Qbviously
A and E are subgroups of AutpC?2. E is said to be the subgroup of

elementary automorphisms in AutpC?2.
The structure of the group AutpC? is given by the following

THEOREM 1.1. AutpC? is the free product of A and E amalga-
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mated over AN FE.

The structure theorem (whose proof is postponed, together with
the proof of Theorem 1.3, to §2) will be useful in the following to
understand the behaviour of one-parameter groups in AutpC?2.

Together with the group of polynomial automorphisms of C?%, we
want to consider also the group of all shears, i.e., the group generated
by the automorphisms of C? of the form

()= () (G))e

where f € Hol(C,C), e € C? and A is a linear form on C? with
Ae = 0.

These automorphisms-which were introduced by J-P. Rosay and
W. Rudin in [12] (see also [2])-are called shears and the group gen-
erated by them will be denoted by Gy (by a slight modification of
the notation introduced in [2]).

Let Aut;C? be the group of all holomorphic automorphisms of
C? whose Jacobian is equal to 1. E. Andersen proved in [2] that
(i1 is a proper subgroup of Aut;C?and that (; is dense in Aut,;C?
for the topology of uniform convergence on compact sets. Since any
polynomial automorphism of C? has constant Jacobian, the group
(i1 can be seen as a generalization of AutpC?. This is also confirmed
by the following Proposition, which is proved by Andersen in [2].

PROPOSITION 1.2. The special linear group on C?, SL(2,C), is
contained in (1.

Let A; be the subgroup of all affine automorphisms of C? with
Jacobian equal to 1. A; is the semidirect product between SL(2,C)
and the group C? of translations with the left action of SL(2,C) on
C?. In particular it is contained in G;. Let E; be the subgroup of
GG1 given by

m={(5)~ (555):

Since each element of F; is the composition of a shear such that

e= (é), with an element in SL(2,C) and a translation, it follows

aeC*BeC, feHol(C,C) }

that Fy C G1. The group Fj is said to be the group of elementary
automorphisms of G.
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The intersection A; N Fy is given by

T ozac—}—ay—}—b) ‘ . }
ANE = — , C*, B,a,be C.
L {<y) (a‘1y+ﬁ @€ C Babe

THEOREM 1.3. G is the free product of Ay and Fy amalgamated
over Ay N Ey.

As we already said, we postpone the proof of Theorem 1.3 to §2.
We endow AutpC? and (G; with the compact-open topology.

DEFINITION 1.1. A one-parameter polynomial group or a one-
parameter shear group 1is a continuous homomorphism of R into
AutpC? or (3 respectively.

Using Theorem 1.1 and Theorem 1.3 we shall prove the following

THEOREM 1.4. A one-parameter polynomial group ® (or a one-
parameter shear group) is conjugated in AutpC? (or G1) to a one-
parameter group in E or A (or Ey or Ap), i.e. there exists X €
AutpC? (G1) such that for allt € R, X o®,0 X~ € Aor F (A4
or Fy).

The proof of Theorem 1.4 is postponed to §3. In order to describe
the possible conjugates, i.e. the one-parameter groups in A, Ay,
and F4, we start by considering the one-parameter groups in A and
Ay, looking for fixed points, periodic points and the behavior of the
one-parameter groups as { — 400 or { — —oo.

DEFINITION 1.2. A fixed point for a one-parameter group @ is a
fixed point for @, for all ¢ € R.

DEFINITION 1.3. A periodic point x for a one-parameter group
® is a point such there exists tg € R* so that z is a fixed point for
&, (hence for ®,,, for all n € Z).

DEFINITION 1.4. A limit point x for a one-parameter group @ is
a point z such there exists lim;— 1o ®(z).

The following proposition collects the results of our investigation
for the case of the group A. It can be also found in [3], together with
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Proposition 1.7.

PropPoOSITION 1.5. All the one-parameter groups in A are given,
up to conjugation in A, by the following expressions

o (5)= () 00 ()= ()
00 ()= ()

T T+ tsy ) <$) <$+t31)
) t(y) (tw+y+t82+t251/2 €)@, y+isy)’

where ¢y, ¢3, $1,82 € C.

Proof. Set ®; <z> = Ry <z> + S, where S; € C? and R, €

GL(2,C)if &, € A and R, € SL(2,C) if &; € A;. The fact that
Dy, = P, 0D, is equivalent to

Z) RH—’F = RtRT and Zl) St+7 = RtST + St.

The first equation implies that R is a one-parameter group in
GL(2,C)orin SL(2,C). Hence R; = exptW, where W is an element
of M(2,C) which, up to conjugation by a suitable element M €
SL(2,C), may be assumed to be

(&1 0 (4] 0
W_<0 C?) o W_<1 01)’
where ¢, € A, iff trW = 0. Equation ii) implies that RS, + S; =
R.S:+ S;.
If there is a tp such that R, — [ is invertible, then we obtain
Si = (Ry—1)S, where S = (Ry, — I)715,;, € C% Otherwise cjc3 = 0,
if &, € Aand ¢; =0,if &, € A;. If ¢; =0 and ¢ # 0, then a simple

ts
(e’ —11)52)' Ifer=0and ¢, =0,

then S; = <izl), in the case in which we have R; = <1 O) , OT
2

0 1
. tSl . o 1 0
St—<t82+t251/2>,1fwehaveRt_(t 1).

computation in #7) yields S; = (
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We begin by examining the case in which

x et (z+ s1) — 51) ) )
P = . , where cyc 0; conjugating by a
(y) (eh2<y+52>—82 162 7 05 conjugating by

tc1
suitable translation we obtain ®; (;) = (e v

tc2y) , which is case a).
z + 131

€' (y + s9) — 52)'

Again by conjugating by a suitable translation, we obtain ®; <§ =

(33—}—tsl

etCQ y

€

Now we examine the case ®; <;) = <

>, which is case b).

_ z e (z +51) — 5
We turn to consider ®, <y> = (efcl (tz +y + s52) — 59 >:

by conjugating by a suitable translation we obtain

*(5)= (iaa’n)

that is case c).
We are left with

2 (5) = (o y i 202)
Ny)— tr +y +tsy +1%s1/2

q)t<$) _ (:U—}—tsl)7
Y Yy +1isg

i.e. cases d) and e). &

or

Now we investigate fixed points, periodic points and limit points
in the different cases listed in Proposition 1.5. We begin with case a):

if z # 0 and y # 0, then &, (2) converges for ¢ — +o0o iff Rec; < 0
and Recy < 0.1f 2 #0 and y =0 (or z = 0 and y # 0), then ®, (g)

has limit for ¢ — 400 iff Rec; < 0 (or Recy < 0); moreover <g> is a
fixed point for all ®;, hence the only case in which the limit of ®,(z)

O), which is a fixed point

exists both for ¢ — +o0 is given by z = (O

for the one-parameter group .
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If z # 0 and y # 0, the periodic points of @ are given by Rec; = 0
and Recy = 0, with ¢; and ¢, linearly dependent over Q, if z = 0
(or y = 0), the periodic points are given by Recy = 0 (or Rec; =0 )
respectively.

Gathering all the results established so far, we obtain that for the

one-parameter group ¢ of case a) the point <8) is always a fixed

point, ® has periodic points iff Rec; = 0 or Recy = 0; moreover ®;
converges for t — 400 iff Rec; < 0 and Recy < 0.
For case b) a simple computation shows that, if s; # 0, there are

neither limit points nor periodic or fixed points; if s = 0, (g) is

always a fixed point and the condition for ®; <§) to converge, as

t — +oo, for all <;>, is Recyg < 0. The condition for the existence

of periodic points (in this case every point in C? becomes a periodic
one) is Reey = 0.

In that same way we obtain that, for case c), ®; (;Z) has limit
for t — +oo iff Rec; < 0. Periodic points are given by z = 0 and
Rec; = 0; the unique fixed point for the whole group is (8) .

In case d) there are limit points iff sy = 0 and 2 = —s3 and these
are the only fixed points. Periodic points never exist. In case e) it
is easily seen that, if s; # 0 or s; # 0, there are neither limit nor
periodic or fixed points.

COROLLARY 1.6. Let ® be a one-parameter group in A or A
such that ® has a fized point. Then ® can be expressed, up to con-
jugation in A, in one of the following ways:

x ey x efcrg
i (y) B (et”y)’ i (y) B <€tcl(tw+y))’

where ¢1,c9 € C. (?)

) is always a fixed points in these three cases.

Proof. In fact the proof comes down to showing that, if there are
fixed points in case b), then we can pass to case a), and, if there are
fixed points in case d), then we can pass to case ¢). In fact, as the
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presence of fixed points in cases b) and d) is equivalent to s; = 0, if
this happens, then case b) reduces to case a) (with ¢; = 0), and, by
conjugating with a translation z — z 4 s9 on the first component we
obtain that case d) reduces to case c). &

Turning our attention to the one-parameter groups in F and Fj
we consider separately the two subgroups.

ProrosiTiON 1.7. All the one-parameter groups in FE are ex-
pressed, up to conjugation in AN E, by

o ;)- (1)

where py satisfies prp-(y) = € pu(y) + pre

ne(3) = (770

where py satisfies pyr (y) = €™ pu(y) + po(y + t52).

tCQ

y)

z oz + pe(y) )
Proof. Let ® = be a one-parameter grou
/ ! ( y) ( By + 71 P group

in /. Then the condition ®;4, = &, 0P, yields, up to a conjugation
with a translation on the second variable, oy = €1, 8; = e!* and
e = (e'2 — 1)¢, if ¢g # 0 (in which case by a suitable translation
we obtain case a) of Proposition 1.7). Otherwise v; = tsy if cg = 0
(which yields b) of Proposition 1.7). &

A direct inspection shows that ®; has a limit for ¢ — 400 in case
a) iff Rec; < 0, Recy < 0 and there exists lim— 4 p¢(y); in case b)
iff Rec; < 0 and there exists limy—, 4o pi(y).

This latter limit may exist or may not exist: for instance take
v = 0, ¢1 # ¢z, and pi(y) = (e'' — €'?)y : it is easily seen that
this gives a one-parameter group in F and that, if Rec; < 0 and
Recy < 0, then p;(y) has always limit for ¢ — 4o0. If Rec; > 0 and
Recy < 0, then pi(y) has no limit for £ — +o0o or t — —oo. Notice
that in certain cases there are values of t different from 0 such that
py is identically 0 : in the above example, if ¢; = co + 272 and t € Z,
then p; = 0. Hence it is not true that p; has always the same degree.
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Going back to the general case, periodic points do exist only if
Reca = 0, in which case we must solve e’z + pi(y) = =z. If we
want every point in C? to be a periodic point, then we must require
Rec; = 0 and ¢q and ¢ must be linearly dependent over Q. Moreover
p; must be zero for suitable values of ¢t. If we want periodic points
to exist, then it is enough that (e** — 1)z + p;(y) = 0. For fixed ¢,
the last equation defines hypersurfaces in C2.

We look for the solutions of equations
i) prar(y) = € pe(y) + p-(e'2y) and
i) Prar (y) = €70 pi(y) + pr(y + ts2),

where p; is a polynomial and ¢ + p; is a C' map.

Notice that by integrating ¢) and i7) in 7 between 0 and 1 we can
prove that the flow depends smoothly on ¢.

In case @) write ps(y) = Y., en @n(t)y”, where, for any fixed ¢,
a,(t) vanishes when n >> 0. Then p satisfies ) iff

Z an(t+7)y" = E (€7 a,(t) + enter a,(7))y" Vy € C,
neN neN
hence a,(t + 7) = €™ a,(t) + e"2a,(r) Vn € N.

We subtract a,(7) from both members, divide by ¢ and let ¢ go
to 0; then, by recalling that a,(0) = 0 Vn € N because ¢ = idc,
we obtain that

da,, ) da,,

— (1) = 7= (0) + mesan(r),

which gives, together with the condition a,(0) = 0,

an(t) = {

where a,, € C. It is easily seen that these functions give the solutions
for 7). This proves that there is an upper bound, independent on ¢,
for the degree of p;.

In case iz) write again p;(y) = >_, N @a(t)y™, where, for any fixed
t, an(t) vanishes when n >> 0. Then p satisfies i) iff

Y an(t+ 1)y =

neN

(et — ety if ¢y # ney

o, teclt if ¢1 = ney,
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> (eman(t) +> a(r) (i) (tSQ)j_”) y" VyeC,

neN i>n
whence
an(t+7) =€ a,(t)+ > a;(7) (i) (tsy)’™™ ¥n € N.

jzn
By subtracting a,(7) from both members, dividing by ¢, letting ¢ go
to 0 and recalling that a,(0) = 0 Vn € N, we obtain

da, ey Ay

?(T) =t (0) 4+ (n+ 1)sgan4+1(7).

Choosing ag, then we can find «,, by a recursive step obtaining that
ap € O for all £ € N.
Now we consider one-parameter groups in Fj :

ProrosiTIiON 1.8. All the one-parameter groups in Fy are ex-
pressed (up to conjugation in Ky N A1) by
. T ety +
RO
Yy €y
. z\ (x4 fily)
i) q)t<y)_< y+th )’

where a € C and in case 1) f; satisfies fror(y) = €™ fi(y)+ fr (e y),
while in case it) it satisfies fiy-(y) = fily +70) + f-(v).

Proof. The fact that @, <$) = (atfl—l_ ft(y)) satisfies the com-
y o y+ 6

position rule is equivalent to the fact that a; 'y + 3; is a one param-
eter group of affine transformations of C, hence it can be conjugated
with a translation to obtain y — €'y or y 5 y + tb; the relation on
f follows immediately. &

In case i), write f;(y) = > a,(t)y”, where a,(0) = 0 for all
n € N. The relation fi,(y) = €™ fi(y) + f-(e"*y) implies
an(t+7) = € a,(t) + e ™ a, (7).
If @ = 0, then there exists an entire function g such that f;(y) = tg(y)
for all t € R and y € C. It is easily seen that the point <ayc) is fixed
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point for @ iff g(y) = 0 and that it is a limit point iff it is a fixed
point.

If a # 0, then a,(t+ 7) = €™"a,(t) + e " a,(7) must be equal
to ea, (7) + e ""%a,(t), therefore we obtain that

(™™ — e Ya, (1) = (7" — e™)a,(t).

Since @ # 0, then there exists 7y such that e™"7% — ¢7® £ (; hence
we obtain that

an(t) — (e—m‘a _ em)an(ro) (e—n'roa _ 6’7'0&)—1 — Cn(e—m‘a _ eta)7

where ¢, € C, and in this way we can recover the function f;.

If we look for a limit point (io) with yo # 0, then we must have
0

Rea > 0 and zo + 5 ¢,yf = 0. If we look for a limit point (;0)
0

with yo = 0, then we must have zg 4+ ¢g = 0.
To study periodic points we have to split up our investigation in
two cases: the first case, in which Rea # 0, and the second case, in

which Rea = 0. If Rea # 0 and <§0) is a periodic point of period ¢y,
)

then yo = 0 and e~ %xg+f;, (0) = zq, that is e " zg+co(1—e70) =

2o and therefore zg = cg.

If Rea = 0 and tpa is an integer multiple of 274, then it is easily
seen that f;; =0, and therefore ®;) = I'dc2.

When we look for a fixed point (;CO), it is easily seen that we
0

must have zg = yo = 0 and f;(0) = 0 for all ¢ € R, that is ¢ = 0.
In case 1), we write again fi(z) =, > @n(t)z"™ and we obtain

an(t+7) = an(r) + 3 ap(t) (rb)4~" (i) .
k>n

We subtract a,(7) from both members, we divide by ¢ and let ¢ go
to 0, obtaining

w0 =T o (1),

In this way we can recover the form of f. It is easily seen that there is
no possibility of having fixed points, periodic points or limit points.
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The above considerations indicate that, in the continuous case,
there is no chaotic behaviour (such as having many different periods),
in sharp contrast with the discrete case of iterates (see [4] and [5]).
The behaviour of all one-parameter groups in AutpC? or in G is
clarified by the above models.

In particular the regularity in ¢ is a consequence of the well-
known theorem for continuous one-parameter groups on a complex
manifold.

THEOREM 1.9. Let X be a complex domain in C" and ® a one-
parameter semigroup (i.e. a continuous homomorphism from RY to
Hol(X,X)). The map t — ®4(z) is analytic on RY for all z € X;
moreover there exists a holomorphic map F from X to C™ such that

0P
— =Fod.
ot~ °
The proof of this theorem can be found, e.g., in [1] (see, p.296).

Fix € C?, let K be a compact neighborhood of z, then, by a

corollary to Cauchy’s theorem, we can solve the Cauchy problem

du
{ Tit,2) = Fult,2),
u(0,2) =2 onU

on (—a,a) X U (where ¢ > 0 and U is a neighborhood of K) with u
analytic.

For the uniqueness of the solution we have ®(¢,z) = u(t, z) if
t > 0 and z € K; moreover, if t,s,t + s € (—a,a) we have

u(s,u(t,z)) = u(t+s,2)

on K.

Let t € [0,a) and s = —t, then last equality implies that,
u(—t,u(t,z)) = z if z € K: then u(—t,-) is a local inverse of ®(t, ),
hence u(—t,z) = ®(—t,2) if z € Ky and ¢t € [0,a) (where K; is a
suitable neighborhood of z).

Therefore (¢, z) is analytic on (—a,a), adding the fact that it
is analytic on the two half-lines we obtain that the dependence is
analytic on the whole line and by analytic continuation

0P

— =Fod.
ot °
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2. Group Structures.

In this section we prove Theorem 1.1 and Theorem 1.3, i.e., we
prove that AutpC? is the free product of A and F amalgamated over
their intersection A N F and that Gy is the free product of A; and
Fq amalgamated over their intersection Ay N Fj.

To prove Theorem 1.1 and Theorem 1.3 we first prove that A
and F (in the case of Theorem 1.1), and A; and F; (in the case of
Theorem 1.3) generate AutpC? and (1, respectively.

THEOREM 2.1. (Jung) The group AutpC? of polynomial auto-
morphisms of C? is generated by A and F.

The proof of Theorem 2.1 can be found in [10].
REMARK 2.1.If g € F N A, then

<$) _ (aa@—l—ay—l—b)
Iy By+vy )’
where a, 3 € C*, a,b,v € C.

LEMMA 2.2. Ay and E; generate (G1.

Proof. In order to prove that F; and A; generate GGy, it is enough
to prove that Fy and Ay generate all shears. First of all notice that,
if e € C? — {0}, then there exists T € SL(2,C) C A; such that

T<(1)) = €; moreover, if
{()-(1),
resor ()= ()1 66)-

where A is a linear form on C? with Ae = 0. Hence, conjugating
S € Fq by a suitable element T" € Ay, we obtain every shear. That
proves that GG is generated by A; and Fj. &

then

These two lemmas give us the possibility to prove a first, very
simple result on the structure of AutpC? and Gj.
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LEMMA 2.3. Both AutpC? and G are arcwise connected.

Proof. In fact it is easily seen that both A and A; are arcwise
connected. Moreover for an element g € F as in (1.1) it is enough
to consider two continuous paths «, 5 : [0, 1] = C* such that a(1) =
B(1) =1 and a(0) = a, 3(0) = f3; then

7 (3) =Sy

is a continuous path in F such that g9 = ¢ and g1 = idc2.

In the same way we can connect any element g in F; to the
identity map with a continuous path in Fj.

Now, for A € AutpC?, (or g € (G1) we choose a representation of
hash=hyo...0hy with h; € AU E (respectively a representation
of g € Gyas g =g,0...0¢1 with g; € Ay U E) and we take n
continuous paths h;(¢) in A or E (or n continuous paths g¢;(¢) in Ay
or Fy) such that h;(0) = h; and h;(1) = idc2. In this way we obtain
that A(t) = h,(t) o...0hy(t) is a continuous path in AutpC? which
connects h with the identity (and the same for Gy). &

We start by proving Theorem 1.1, whose proof is much simpler
than the proof of Theorem 1.3, due to the fact that the degree induces
a partial ordering on polynomials.

DEFINITION 2.1. A sequence (¢y,...,¢g1) of length n > 1is called
a reduced word with respect to the subgroups A and F if, for each
it=1,...,mn,9; € (AUE)/(AN F) and ¢;, gi+1 do not belong both
to the same of the two subgroups.

Let ¢ = g,0...0930¢9; € AutpC? where (g,,...,g1) is a
reduced word; we shall prove that this representation is “unique” up
to products in A N E. For this we need the following

THEOREM 2.4. Ifg = g,0...092001 and (gn, ..., g1) is a reduced
word, then g # idca.

DEFINITION 2.2. For h € AutpC?, we define the degree of h to
be the maximum between the degrees of its two scalar components.

The following theorem implies Theorem 2.4 and therefore Theo-
rem 1.1.
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THEOREM 2.5. Ifg = g,0...092001 and (gp, ..., g1) is a reduced
word, then the degree of g is the product of the degrees of its factors.

Proof. Since for n = 1 the statement is trivial, we proceed by
induction on n.

Let w; and wsy be the two scalar components of g o...0g50 g1,
where g is an element in F : by the induction step we can suppose
that deggy-...-deggr = degwy > degwsy (the relation degw; > degws
is a part of the inductive step).

As gry1 € A\ E, then gpi10gg0...0g970g1 has the same degree as
gro...0g90gy. Moreover if u; and uy are the two scalar components
of gr+1 09k ...0g20 g1, then degus > degu;.

Now we consider gz4o € F'\ A. If v; and v are the scalar compo-
nents of gx420gk4+109g£0...0¢204g1, then degvy = deg(aus + p(uz)),
where v € C* and p is a polynomial of degree > 1. Hence

deg vy = degp-deguy = deg grio - deg gpy1...deg g > degvg =

deg gx+1 - - -deg g1,
and that completes the proof. &

COROLLARY 2.6. If (gn, ..., 1) is a reduced word, then its length
is an invariant of the element ¢ = g, 0...0 g, € AutpC?. Moreover
the representation g = g, o ...0 g1 is unique up to replacing g by
hgr and gri1 by grya1h™t, for some h € ANE.

In the same way, to clarify the structure of Gy, we prove now
that G4 is the free product of A; and F; amalgamated over the
intersection Fy N Ajy.

First of all we introduce the notion of rosary, due to Andersen
(see [2]).

For any r > 1 set Ho(C") = {f € Hol(C",C) : f(0) = 0}.

DEFINITION 2.3. A rosary is a sequence L = {Ly,...,L,} of
linear subspaces of Ho(C?) such that

i) dim L; =2,

ii) dim L; N Liy1 21,



36 CHIARA DE FABRITIIS

iii) there are u,v € L; such that (u,v) has Jacobian equal to 1 on
Cc2.

DEFINITION 2.4. A rosary is said to be non-tautological if L; N
Liya={0}fori=1,...,n—2and L; # Liyy fori=1,...,n— 1.
Notice that the second condition is necessary only if n = 2, be-

cause, if n > 2 and L; = L;4q for some ¢ = 1,...,n — 1, then dim
LiNLiye > lif2<n—1ordim LiiNLiy > lifi=n-1.

We denote by (vq,...,v;) the complex vector space spanned by
the vectors vy, ..., v;.

DEFINITION 2.5. A sequence U = {ug, uy,...,u,} C Ho(C?) is
called a basis for the rosary L if

1) L; = (uj—1,u;) and

2) Uip1 = fip1(wi) + ui—y, where fiiy € Ho(C).

Notice that, if f;+q is linear, then L; = L;41, and therefore the
rosary L is tautological.

LEMMA 2.7. Let ¢1,...,9, be a sequence of shears such that

gj(?)) = (g) forallj=1,...,n, and set
L1:<x,y>, L2:<gl <$) c€1,91 <$) '€2>,...7

) )
z z
b= roon (%) -ensioon () o)

where the dot indicates the canonical hermitian product in C? and
{e1,es} is the canonical basis in C2. Then L = {Ly,...,L,} is a
rosary.

Proof. Conditions i) and iii) of Definition 2.3 are trivial.
If, with the same notation as before,

()= () ()

then taking e and another suitable vector ¢ as a basis of C? we can
find a basis u, v of L; such that ¢;41(u,v) = ue + (v+ f(u))e. Thus
L;4y is spanned by u and v+ f(u), which yields ii). &
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The proof of the following proposition essentially follows an ar-
gument given in [2] for a more restrictive case.

ProPOSITION 2.8. A non tautological rosary has a basis.

Proof. We proceed by induction on the length n of the rosary,
the case n = 1 being trivial.

We first consider n = 2, to clarify notations. Let L = {Ly, Lo}
be a rosary. We have, by definition, L = (ug, u1) and Ly = (uq,v),
for some wug,uy,v. By property iii) of Definition 2.3, .J(ug,u1) =
cJ(v,uy), for some ¢ € C*, where J denotes the Jacobian. Hence
J(ug — cv,u1) = 0, which gives cv = f(uy)+ ug, where f is an entire
function. The choice us = cv completes the proof for n = 2.

By induction we can suppose we have found w4, ..., u; with L; =
(ug, uk—1), Ly—1 = (up—1,ur—2) and up = fy(ug—1) + up—o. By def-
inition of rosary there is 0 # v € Ligy1 N Lk, v = aug + bug_q.
As L is non- tautological, @ # 0. Hence we can replace uj by
u, = up + albup_y = a v € Ly N Liy1 and then we get ugiq
with the same procedure as above. &

REMARK 2.2. In the choice of a basis of a non-tautological rosary
Ukt1 = fe+1(uk) + ug—1, hence fr41 cannot be linear.

We introduce an ordering on #Ho(C) which will be useful in the
following. This ordering is provided by Nevanlinna’s value distri-
bution theory; as our use of this tool is almost incidental we refer
to [2] for a more exhaustive treatment of the subject and further
references.

Let f € Ho(C) and set
1
mifor) = 5= [ n* £ lag).

where S is the unit circle in C oriented counterclockwise, and |d¢|
is the standard Lebesgue measure on S!.

The following proposition is obtained gathering Lemma 3.2.1 and
Corollary 3.2.3 in [2], together with the trivial remark that, if f =
idc, then m(f,r) = Int r. If f = idc we denote m(f,r) by m(z,r).

ProposITION 2.9. Let f € Ho(C).
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m(f,r _d,'

If [ is a polynomial of degree d > 1, then limsup, mier) =

if [ is a trascendental function, then limsup, % = +o00.

DerFINITION 2.5. If w and v are entire functions on C we say

that
m(u,r)

w>=v if limsup > 1.

r—too M(V,T)

Then we have the following proposition which has been estab-
lished in [2]; see Theorem 3.3.1 of [2], where it was stated in a slightly
more restrictive form than in Proposition 2.10. The proof given by
Andersen extends almost verbatim to our more general setting.

PropPoOSITION 2.10. Let p,q € Ho(C), let ug, ..., u, be a basis of
a non tautological rosary and let u;(s) = u;(p(s), q(s)). Then u;(s) €
Ho(C), and, if uz(s) is non-zero and uz(s) > uy(s), then ugy1(s) >
ug(s) for all k > 1.

Our proof of Theorem 1.3 makes use of the ordering > on #(C)
introduced above to show that, if (g,,...,¢1) is a reduced word in
GG, then g, 0...0g1 # idc2. In fact, given a rosary L, we show that
we can find a suitable basis uy, ..., uz which is naturally ordered by
> . This will imply that, given any reduced word (g, ..., ¢1) in Gy,
then g, 0...0g1 # tdce.

Take g ¢ AyNEy, and let (gy, ..., g1) be a reduced word of length
n with respect to the subgroups Ay and F; such that g = g,0...0¢;.
We prove that the length n is an invariant of the element g € G. As
in the case of ¢ € AutpC?, all we need follows from

THEOREM 2.11. Ifg = g,0...0g91, where (gy, ..., g1) is a reduced
word, then g # idca.

If g =¢g,0...0¢1 = tdg2, then the two scalar components of
(;) g ( ;) are both linear in  and y; moreover they both belong
to HO(C2)

The first step in the proof of Theorem 2.11 consists in showing
that we can replace ¢ = g, 0...0¢1 by g = g, o...0 g1, where
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§k<8) = <8) , gr and g are in the same subgroup, and g, ¢ ANE,

fork=1,...,n.
PROPOSITION 2.12. Suppose (gn, - .., 1) is a reduced word in Gy
with—Iletting as before ¢ = g,0...0G1— g(8):<8) We can find a

representation of g as a reduced word in Gy, g = §, 0...0 gy, where

. (0 0
gk<0) = <0>,f0rallk_1,...,n.

Proof. Set By = g1<8

r1 0 g1, where rq is the translation of vector —Bj.

Set again Bry1 = gr41(Bk) and Jry1(2) = gry1(z + Br) — Bry1.
Hence gr41 = rry109gp41 07, , Where ry is the translation of vector

—Bj,. Then g; < 8) = (g), and, as the translations are contained in

) and g1(2) = g1(z) — By, that is g =

A1 N Fy, gk is contained in the same subgroup as gi (i.e. g € Ay iff
gr € Ap and similarly g, € Fy iff g, € Fy); moreover g ¢ Ay N Ej.

. 0
Since B,, = (0

done. &

),then §n0...041 = §,0...04q, and we are

By Proposition 2.12 we can suppose that, if g = g, 0...091 =

tdg2, then !]k(?)) = (?))’ for k = 1,...,n. Now we can come to

the proof of Theorem 2.11.

Proof. (of Theorem 2.11) By Proposition 2.12 there is no restric-

8) . Since the case

n = 1 is obvious, we can suppose n > 2 and proceed by induction on
n.

tion in assuming that each gp maps (8) to (

If g, and ¢y are both in Ay or both in F;, then we can replace
gn0...0g20¢g1 by g1 0¢g,0...0¢9 : this is still equal to the identity,
but, as a reduced word, has length n — 1. So we can suppose that n
is even, in fact we have seen that we can suppose that ¢, and ¢; do
not belong to the same subgroup; hence, as each g; does not belong
to the same subgroup of g;41, we can suppose that n is even.
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If (g, ..., 91) is a reduced word such that g, o0...0g9; = idc2, we
can suppose that g; € Fq. In fact if g; € Ay we have g, € F; and
g1 0 gn © ...0 g9 is still equal to the identity map. If n = 2 we get
g1 = g;l, whence g; € A1 N Ey, which is a contradiction. Thus we
can suppose n > 4.

Now we prove that Lq,..., L,, given by

Li=(2,y), L2 = <!]1<$) '617!]1<z) “€2),

Yy
X X
L3:<!]3092091<y) '61793092091<y) “€2)y .,

<L T
Lm:<gn_1o...og1<y) “€1,0n_10...041 <y) .€2>7

where m = n/2 4 1, is a non tautological rosary.
First of all L = {Ly, Ly, ..., L,,} is a rosary because, if we set

My = (z,y),...,

x x
Mj+1:<gjo...ogzogl<y> -el,gjo...ogzogl(y) C€2)y ey

then M = {My, My, ..., M,} is a rosary by Lemma 2.7 and so, L, =
My, Lo= My = M5, Ly = M4 = Ms, ..., is a rosary.

We now prove that L is a non tautological rosary. Note first that
L1 # Ly because Ly = (z+ fi(y), y), where f; is non-linear (because
g1 € By \ Ay and f;(0) = 0).

Suppose that Ly N Lz # {0}, and write

z 041$+f1(y)> (x) <a1$+b1y)
= = d
a (y) < ai'ly P P2y cw+diy) "

o (3)=("08")

where f; and f5 are on-linear elements of Ho(C) and ¢; # 0. Then

90909<$)_
3092 ly

(as(m(alx + fi(y)) + bozl_ly) + faler(onz + fi(y)) + dozl_ly)>
a3t (er(nz + fi(y) + diat'y) '
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If (z,y) N <g3092091<z) '61793092091<§) -e3) #{0} there
exist v, d € C such that |y| 4+ |§] > 0 and

Yles(ar(arz + fi(y)) + bay'y) + fa(ci(arz + fi(y)) + day'y)]+

Slag! (ci(enz + f1(y)) + diay'y)]
is linear in 2 and y. Then v (asfi(y)+ fa(c1(arz+ fi (y))+d1a1_1y))+

5010451]‘1 (y) is linear in z and y, and therefore taking the derivative
with respect of z we find that ayyer fi(ci(eiz + fi(y)) + diag'y)
is constant. As f3 is non-linear and ¢;(arz + f1(y)) + diaj'y is
non-constant, then ayyc; = 0, and since ajc; # 0, we obtain that
v = 0. Thus ¢y f1(y) is linear in z and y in contrast with the fact
that dc; # 0 and f; is non-linear.

Suppose now that Ly N Lgyo # {0}, with & > 1 and set w; =

ggk_go...og1<§) ~e;, 7 =1,2. Then

T z
Ly = <92k—30---091<y) '617!]2k—30---091<y) '€2>

because gor_o is linear. Moreover

z T
Lk+2 = <92k+10---091 (y) *€1,92k+1°0...001 (y) '€2>

w w
= <92k+1 0 g2k © g2k—1 < 1) *€1,92k+1 092k © g2k—1 < 1) '€2>-
wa )

If LN Lgt2 # {0}, then there are v, € C such that |y|+[§] > 0
and the holomorphic function

w w
V92641925921 < ) - €1+ dg2k+1 © g2k © Y2r—1 ( ) €2
(10)) w2

is linear in w; and wy. Hence, arguing as in the case k = 1, we get a
contradiction, proving that L is a non tautological rosary.

We now choose a basis {ug, u1, ..., Uy} of the rosary L. As L, =
(z,vy), La = (z + fi(y),y), and so on, then we have ug = z, uy =y
and uy = p(z+ fi(y))+vy, where p € C*. Choosing p(s) = ¢(s) = s,
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and, using the notations of Proposition 2.10, we obtain that ug(s) =
u1(s) = s, ug(s) = pfi(s) + (1 + v)s, where g # 0. It is easily seen
that ug(s) is non-zero. To apply Proposition 2.10 we only need to
prove that ug(s) > uq(s).

For this goal note that, if f; is a polynomial of degree d > 1 and
p # 0, then pfi(s)+ (n+v)s is still a polynomial of degree d, hence,
by Proposition 2.9,

m(pfi(s) + (n+v)s,r)

lim sup =d>1;
r—+00 m(s,r)
whereas, if f; is trascendental, we have
lim sup m(:ufl(s) + (:u + V)57 T) = 400,
r—4o00 m(s,r)

again by Proposition 2.9. Hence we can apply Proposition 2.10,
obtaining u, (s) > wpm—1(5) > ...uz(s) > u1(s) = s. As m =n/2 +
1 > 3, neither u,,(s) nor u,,_;(s) are linear in s.

If g = g¢g,0...0¢1 were the identity map, then the components of

(;) — g(ggj were z and y. Thus L,, would be equal to (u,, #,—_1),

with u,,(s) and wu,,_1(s) non-linear in s, whereas, replacing z by
p(s) = s and y by ¢(s) = s, we obtain two functions which are both
linear in s. This contradiction shows that g, o...0 g1 is not the
identity map and completes the proof of Theorem 2.11. &

Then we obtain, as a trivial consequence, the following

CoRroOLLARY 2.13. If (gn,...,91) is a reduced word, then its
length is an invariant of the element g = ¢, ...q1 € G1. Moreover
the representation ¢ = ¢, o...0 g1 is unique up to replacing g by
hgr and gri1 by gry h™, for some h € Ay N Ey.

Theorem 1.1 and Theorem 1.3 are the keys of the forthcoming
section, which contains the proof of the conjugacy theorem for the
one-parameter groups in AutpC? and G.



ONE-PARAMETER GROUPS OF VOLUME-PRESERVING etc. 43

3. Proof of the Conjugacy Theorem.

This section contains the proof of Theorem 1.4. As the proof is
equal in the case of the two groups AutpC? and G, we introduce
the following notations:

G = AutpC? (respectively G1),

& = F (respectively FE1),
A = A (respectively Aj).

Let g € G\ (ANE) and let (gy,...,q1) be its representation as
a reduced word in G (this representation is almost “unique”, in the
sense specified in Corollary 2.6 and Corollary 2.13).

Obviously grogg—10...0910g,0...0¢k41 is conjugated to g in
G. Hence, if g, and g1 both belong to either A or £, in the conjugacy
class of g there is an element which has a representation as a reduced
word whose length is strictly less than the length of g.

At this point only two cases can occur: either the element §
of minimal length in the conjugacy class of g is of length 1, i.e.,
g=XohioX™! where X € Gand hy € (AUE)\ (ANE), or § has
a representation as a reduced word of even length and the first and
last elements of this word do not both belong to the same of the two
groups A or £.

Our proof of Theorem 1.4 relies on the following estimate of the
length of the powers of a word.

ProposITION 3.1. Ifg € G\ (ANE) is conjugated in G to an
element of minimal length 2r, then the length of ¢ is at least 2rm.

Proof. As gis conjugated in G to an element of minimal length 2r,
then g = X ohg,0...0hjo X1, where § = hy.0...0hy, (har, ..., h1)
is a reduced word, X € G and hy and hg, do not both belong to the
same of the two groups A or £. Hence

(3.1) 9" =Xo(hyo...0h) "0 X1,

We remark that, if X € ANE, then (3.1) implies that the length
of ¢ is equal to 2rm. If X ¢ ANE, let X =& o...0&;, where
(&1,...,&;) is a reduced word. We proceed by induction on j.
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If j =1, then g =& ohg,0...0h 051_1 and, as ho, and Ay do
not belong to the same of the two subgroup A and &, this is not a
representation as a reduced word. Suppose that hy. and & belong
to the same subgroup (the case in which hy, is replaced by h; can
be dealt with exactly in the same way). If & o hg, ¢ AN E, then
((&1 0 hap), hor—1, .. .,hl,ffl) is a reduced word and thus

g™ = (& ohg)ohg—10...0hj0hg,0...0h10...0hy,0...0h ofl_l.

Hence a representation of g™ as a reduced word is obviously given

by
((51 Oh2r)7h2r—17"'7h17h2r7-"7h17"'7h2r7-"7h1751_1)

and the length of ¢ is bigger than 2rm. If & o hy, € AN E we set
c =& o hy,, ilgr_l =cohg,—_1 and izgr = hy, 0o c™!. Then ilgr_l and
iLQT are not in the same of the two subgroups A and & (because hy,_1
and hg, are not). Then we have g = izg,,_l ohgr_g0...0h10 izgr,
where (iLQT_thT_Q, .. .7h17il27») is a reduced word; then, using the
above remark, we obtain that the length of ¢™ is 2rm.

Proceeding by induction on j, we can suppose that the statement
is true for j — 1 and consider X = §;0...&, where (§;,...,&) is a
reduced word.

Then g =& 0...00hy,0...0h ofj_l o.. .051_1 and, as hg, and
hy1 do not belong to the same of the two subgroups A and &, this
is not a representation as a reduced word. Suppose that hy, and &;
belong to the same subgroup (the case in which hgy, is replaced by
hq can be dealt with exactly in the same way). If {; 0 hy ¢ ANE,
then

(&1,...,&21, (& 0 hgy ), horq, .. .,hl,gj_l7 )
is a reduced word and we obtain
g™ =&o...0(§0hy)ohy_10...0h10.. 0hy0.. 0hiof; o, o0&
Thus a representation of g™ as a reduced word is given by
(€15 o1y (§G 0 har )y haroty ooy hay gy By 6T,

showing that the length of ¢ is 2rm 4+ 25 — 1 > 2mr.
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If {;0hy € ANE, setting ¢ = ohy,, we obtain g = &;o...0§;_10
cohg,_j0.. .ohlth,ooc_lofj__llo. . .051_1. If we define hg,_; = cohg,_
and iLQT = hy,oc™ !, then EQT_I and iLQT are still in different subgroups
and they both lie outside AN &. Hence (har—1, hor—2,..., k1, he,) is
a reduced word and we have found a representation of g

g:YOiLQT_IOhQT_QO...Ohl OiLQTOY_l,

with Y =& o...0&_1. Then we can proceed by induction on j to
obtain that g™ has length greater or equal than 2rm. &

At last we come to the proof of Theorem 1.4, which will be given
in the case of a one-parameter group ¢ : R — G.

First of all we prove that A and & are closed in G: in fact,
let ¢, — ¢ in Gq(AutpC?) and suppose that ¢, € E;(FE), then
the first component of ¢, is affine in z and the second component
of ¢, does not depend on z and is affine in y, and therefore also
the first component of ¢ is affine in 2 (it depends on z because ¢
is a biholomorphism of C?) and the second component of ¢ does
not depend on z and is affine in y (it depends on y because ¢ is
a biholomorphism of C?). Moreover the Jacobian of ¢ is equal to
the limit of the Jacobian of ¢, therefore also Fy is closed in Gy. If
©n — @ in G (AutpC?) and ¢, is affine, then ¢ is affine too and
the same reasoning on Jacobians implies that A is closed in AutpC?
and A; is closed in G;. Therefore also B =.4N €& is closed in G.

Next we prove that, for any ¢t € R, ®; is conjugated to an element
in Aor €.

If &, € ANE, this is obvious. If &, € AN E, let [ be the length
of ®; and choose mg € N such that [ < 2mg. Consider D/ if
this were not conjugated to an element in A or &, then it should be
conjugated to an element of minimal length 2r, therefore Proposition
2.2 implies that the length of ®; = (®,/,, )™ is greater than or
equal to 2rmg > 2mg > [, that is a contradiction. Then @/, is
conjugated to an element of A or £ and hence ®; = (®,/,, )" is
conjugated to an element of A or £.

We recall that we proved that G is the free product of A and &,
amalgamated over B = ANE. We call in the following theorem, due
to Moldavanski (see [13], Theorem 0.3).

THEOREM 3.2. Let H be an abelian subgroup of G where G is
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the free product of A and £ amalgamated over their intersection B.
Precisely one of the following situation holds:

1) H is conjugated in G to a subgroup of A or &,

2) H is not conjugated in G to any subgroup of A or £. There
exists a nested chain of subgroups Hy C Hy C ... C H;_1 C
H; C ... such that H = U2y H; and each H; is conjugated in
G to a subgroup of B,

3) H=Fx < g >, where < g > is the subgroup of G generated
by g, F is conjugated to a subgroup of B, g is not conjugated to
any element of A or £ (where X denotes the map Bx W — G
given by multiplication and W denotes the set of reduced words

in G, see [13]).

The subgroups of G are called of type 1), 2) or 3), according to
the fact that they satisfy 1), 2) or 3).

REMARK 3.1. If H is of type 3), in particular it contains the
element g, which is not conjugated to any element in A or £.

Now, let ® be a one-parameter group in G: we already proved
that for all t € R, ®; is conjugated to an element of A or £, hence
H = {®;,t € R} is an abelian subgroup of G which cannot be of
type 3).

Let us prove that H cannot be of type 2).

If H is of type 2), we denote by C; the set {t € R : &, € H;},
where the H;’s are the subgroups in the definition of subgroup of
type 2).

Let X; € G be such that X;o0ho Xi_l € B for all h € H;, then
X, 0®; oX,L»_1 € Bforallt € C;. As B is closed and both conjugation
and ® are continuous mappings, then Xioq)toXi_l € Bforall t € C;.

Since H = U, H;, then UZ2,C; = R and therefore U2,C; = R.
Baire’s category theorem implies that there exists 79 € N such that
the inner part of C;, is not empty, therefore there exist 7 € R and a
positive number ¢ such that (1 —e,7+¢) C Cj,.

Therefore X;, o ®; oXigl eBforallte (r—e,m4¢).

Let us consider the one-parameter group ¥; = X;, o ®; 0 X;l,
we already proved that W, € B for all t € (1 — ¢, 7+ ¢).

Let p € (—€,¢), then ¥, = W 4, . =WV, ,0¥_, =V, 4 o0
(U,)"';as 7+ p and 7 belong to (1 — &, 7 +¢) and B is a subgroup
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of G, then W, € B for all p € (—¢,¢). Taking all integer multiples of
the interval (—¢,¢), we obtain the W, € B for all £ € R.

Then H is conjugated to a subgroup of B, as B is in particular

a subgroup of A, then H is conjugated to a subgroup of A; this
contradicts the fact that H is of type 2), therefore, by Theorem 3.2,
H is of type 1), i.e., H is conjugated to a subgroup of A or £ and
this proves Theorem 1.4. &
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