POINTS OF CONTINUITY, QUASICONTINUITY AND
CLIQUISHNESS (*)

by JAN Borsik (in Kosice)(**)

SOMMARIO. - In questo lavoro si esamina per una funzione f la terna
(C(f), E(f), A(f)) ove C(f), E(f) ed A(f) sono gli insiemi dei punti

di continuita, quasicontinuita e cliquishness rispettivamente.

SUMMARY. - The triplet (C(f), E(f), A(f)), where C(f), E(f) and A(f)
are sets of all continuity, quasicontinuity and cliquishness points of a
function f, respectively, is investigated.

In what follows X denote a topological space. For a subset A of
a topological space denote by ClA, IntA and A? the closure of A, the
interior of A and the set of all accumulation points of A, respectively.
The letters N and R stand for the set of natural and real numbers,
respectively.

Let X be a topological space and (Y, d) a metric one. We recall
that a function f : X — Y is quasicontinuous (cliquish) at a point
z € X if for each ¢ > 0 and each neighbourhood U of 2 there is
a nonempty open set G C U such that d(f(y), f(z)) < € for each
y € G (d(f(y), () < ¢ for each y, = € G) (31151, [3], [9)).

Denote by C'(f), E(f) and A(f) the set of all continuity, quasi-
continuity and cliquishness points of a function f: X — Y, respec-
tively. It is known that C'(f) C E(f) C A(f), C(f) is a G5 set, A(f)
is closed [8] and A(f) \ C(f) is of the first category [9].
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Are these conditions also sufficient? This means, let A, ¥ and C
be subsets of X such that C' C FF C A, C'is a G set, A is closed and
A\ C is of the first category. Does there exist a function f: X - Y
such that C = C(f), F = E(f) and A = A(f)?

If X, Y are normed linear spaces and X is a Baire space, a pos-
itive answer is given in [4]. Some sufficient conditions are given also
in [3]. We shall show that this is true also if X is a Baire pseu-
dometrizable space without isolated points or X is a Baire perfectly
normal resolvable locally connected space.

The following statement is claimed in [5].

A. (See [5; Theorem 2]). Let X be a topological space which is
a union of two dense disjoint sets and let (Y,d) be a metric space
with at least one accumulation point. Then for each decreasing se-
quence {W,, : n € N} of open subsets of X and each set F satisfying
inclusions

C=(\W.CEC[)ClW,=4

n=1 n=1

there is a map f : X — Y such that C = C(f), F = F(f) and
A= A(f).

We shall show that conditions on X and Y in A are not sufficient.
Examples 1 and 2 show that the conditions on X are not sufficient
and Example 3 shows that the conditions on Y are not sufficient.

ExampLE 1. Let X = N with the cofinite topology and Y =
R with the usual metric. Put W, = X \ {1,2,,3,...,n}, C =
Ny W, =0, FE=A=2,CIW, = X. It is easy to see that
every quasicontinuous function f : X — Y is constant and hence

E(f) = X implies C(f) = X.

ExAMPLE 2. Let X = R with the topology 7 = {0, X }U{(a, c0) :
a € R}, Y = R with the usual metric. Put W,, = (n,00), C =
ez W, =0, E=A=N;2,ClW, = X. Easy it is to see that

every quasicontinuous function f: X — Y is constant.

EXAMPLE 3. Let X = R? with the usual topology, ¥ = {% :
n € N}U{0} with the usual metric. Put W,, = X \ {(0,0)} for each
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neN,C=MNL, W,=X\{(0,0}, F=A=N;2, CIW, = X. Let
f:X =Y besuch that C = C(f). Then f must be constant on C.
However then (0,0) ¢ C(f) implies (0,0) ¢ E(f).

Therefore A does not hold. However, the following “partial”
theorems are true. We recall that a space X is said to be resolvable
[7] if it is a union of two dense disjoint sets.

THEOREM 1. Let X be a resolvable topological space and let (Y, d)
be a metric one with Y £ (. Let E, A be subsets of X. Then there
is a function f : X — Y such that E = F(f) and A = A(f) if and
only if there is a nonincreasing sequence (W,,),, of open subsets of X

such that (Y Wy C EC (] CIW, = A.

n=1 n=1

THEOREM 2. Let X and Y be as in Theorem 1. Let C', A be
subsets of X. Then there is a function f : X — Y such that C =
C(f) and A = A(f) if and only if there is a nonincreasing sequence

(Wy)n of open subsets of X such that ﬁ W, =C and N Clw, =
n=1 =1
A.

n=

Proof of Theorems 1 and 2. Necessity follows from [5; Theorem
1]. The function f in [5; Theorem 2] (i.e. f(z) = yo for z € F,
f(z) = yan for z € (W, \ Woy1) \ EN Xy and f(z) = yanqq for
z € Wy \ Was1) \ EN Xg, where Xy and X3 are dense disjoint
subsets of X such that X = X; U X5, yo is an accumulation point
of Y, (yn)n is one-to-one sequence converging to yo with y, # yo

and Wy = X) is such that £ = E(f) and A = A(f). If we put
E = (N W, = C in the definition of f, we obtain C' = C(f) and

n=1

A= A(f). &

It is easy to see that if A = X in Theorem 1, then the assumption
“X is resolvable” can be omitted. Hence we have

COROLLARY 1. Let X be a topological space and let (Y,d) be a
metric one withY? # (. Then the set M is the set of all discontinuity
points of some cliquish function f: X — Y if and only if M is an
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F, set of the first category.

This corollary generalizes a result from [10], where it is assumed
that X is Baire and YV = R.
Let C', E and A be subsets of X. Denote by (A), (B) and (C)

the following conditions:

(A) there is a function f: X =Y
such that C' = C(f), £ = E(f) and A = A(f);

(B) CCFECA, CisGs, Aisclosed
and A\ C' is of the first category;

there is a nonincreasing sequence (W,,),
() of open subsets of Xsuch that

NW,=CCcECA= () CIW, .
n=1 n=1
Then (A) implies (B) and by [5] (A) implies (C). By [5] (C)
implies (B). In general, (B) does not imply (C). A topological space
is called perfect if every closed subset of this space is Gs [2]. In the
sequel we use normal space but we do not suppose that they are T}
spaces.

ProprosiTION 1. Let X be a perfectly normal space. Then the
conditions (B) and (C) are equivalent.

Proof. Let (B) be satisfied. Then A = ﬂ H,, where H,, are

open sets and ClH, 4y C H, for each n € N. Slnce A\C'is an F, set
of the first category, A\ C = U F,, where I, are closed nowhere

dense and F),, C F,4; for each n E N. Put W,, = H, \ F,,. Then W,
are open sets and Wn+1 C W, for each n € N. It is easy to see that

C= ﬂ W, and A = ﬂ Clw,,. ¢

n=1 n=1

Remark 1. The assumptions on X in Proposition 1 cannot be
omitted. The space X from Example 1 is perfect but not normal. If
we put C' = F'= A = {1}, then C, F, A satisfy (B) but they do not
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satisfy (C). The space X from Example 2 is normal but not perfect.
If weput C' = F =0, A= (—00,0], then C, E and A satisfy (B) but
they do not satisfy (C).

Denote by (D), (E) and (F) the following conditions on a topo-
logical space X (wj, is the oscillation of a function f: X — Y):

for each nonincreasing sequence (W,),, of open

subsets of X such that B = ﬁ CIW,, \ Oﬁ W, is
n=1 n=1
co — dense (i.e. X \ B is dense) there is a bounded
function g : X \ B — R such that
(2) lim inf wy(u) > 0 for each z € X'\ ﬁ CIW,,,
U=z n=1

(17)  wy(z) =0 for each z € Oﬁ W,
n=1
(vi1) lium_glf wy(u) =0 < wy(z) for each z € B;

for each co — dense set I’ of the first category

(E) and I, there is a continuous bounded function
g: X\ I'— Rsuch that w,(z) > 0

for each z € F;

for each nowhere dense set F there is a
(F) < continuous function g : X \ ' — [0, 1]
such that wy(z) =1 for each z € F'.

Example 3 shows that Y must contain large components. In the
sequel we shall assume that Y = R.

LEMMA 1. The condition (A) implies (D).

Proof. Let (W,), be a nonincreasing sequence of open subsets

of X such that the set B = Oﬁ CIW, \ ﬁ W, is co-dense. Put
n=1 n=1

C= AW, E=A= () CW,. Let f: X — R be such that
n=1 n=1

C=C(f), F=FE(f) and A= A(f). Put h = arctgo f. Then h is

bounded and C'(h) = C, E(h) = F' = A = A(h). Denote g = h|x\p-

We shall show that g satisfies (i), (ii), (iii).
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(i) Letaz e X\ ﬂ Clw, = X \ A. Since X \ A is open and

z ¢ Ah)sox gé A( ). Therefore there is an ¢ > 0 and an open
neighbourhood U of z such that U C X\ A and d(h(V\B)) = ¢
for each open subset V of U. This yields w,(y) = ¢ for each
y € U and hence lim inf wy(u) 2 e >0.

(i) Ifz € Oﬁ W, = C, then z € C(h). Hence z € C(g) and

n=1

wy(z) =0.

(ii) Let z € B. Then z ¢ C'(h) and hence wy(z) = a > 0. Let
U be an open neighbourhood of z. Since z € E(h) there is
an open nonempty set U; C U such that |h(z) — h(y)| < {5
for each y € Uy. Since d(h) > § there is z € U such that

|h(2) = h(2)| >

If z € A(= F(h)) then there is an open nonempty set Uy C U
such that |h(z) — h(y)| < {5 for each y € U. Since B is co-dense,
there are w € Uy \ B, v € Uy \ B. Then we have

% < |h(2) = h(@)| = [A(2) = R(v)] + |A(v) = h(u) |+

+h(w) = h@)] < h(u) = h(v) + <.
This yields |h(u)—h(v)| > § and hence d(h(U\B)) > § and therefore
wy(z) 2 5 >0.

If z¢ A, theset U\ A is an open neighbourhood of z. Then z ¢
C(h) and wy,(z) = 8 > 0. This yields d(h(U\ B)) = d(h(U\ A)) > £
and hence w,(z) > g > 0.

Further, let ¢ > 0 and U be a neighbourhood of z. Then z € A(h)
and hence there is an open nonempty V C U such that d(h(V)) < ¢,
i.e. wi(y) < e foreach y € V. Therefore lim inf w, (u) £ lim inf wp(u)

< €. However this means that lim inf w,(u) = 0. &
Uu—r

THEOREM 3. Let X be a Baire space, Y = R. Let C, F, A be
subsets of X. Then (A) is equivalent with (C) and (D).
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Proof. By [5] we have (A) = (C) and by Lemma 1 we have

(A) = (D).
(C) & (D) = (A): Let (W,), be a nonincreasing sequence of open
subsets of X such that W, =C CFEF C A = CIW,, and let
n=1 n=1

B = ﬁ CIlw,, \ Oﬁ W,. Since X is Baire, so B is co-dense. Let
n=1 n=1
g : X\ B — R be a bounded function satisfying (i), (ii), (iii). Let
¢ € R be such that g(X \ B) C [—¢,¢].
Let 2 € B and U be a neighbourhood of 2. Denote by

C(z,U) ={y € Y : for each neighbourhood V' of y there is
an open nonempty G C U such that g(G\ B) C V}.

We can easy prove that C'(z,U) is a closed set and C'(z,U) C
[—¢, c]. We shall show that C(z,U) is nonempty. Let n € N. Since
lim inf wy(u) < L thereis u, € U\Bsuch thatw,(u,) < L. Therefore
there is an open neighbourhood G, of u,, such that d(¢g(G,\ B)) < L.
Let y € [—¢,¢] be an accumulation point of the sequence (g(uy))y.
Let V be a neighbourhood of y, let € > 0 be such that (y—¢, y+¢) C V
and let m € N be such that m > 2 and g(u,) € (y— 5,y+ 5). Then
for each t € G, \ B we have

9= 901 < Iy — glun)| +1g(un) —9(0)] < 5+ <

Therefore g(G,, \ B) C V and y € C(z,U).

Now let € B and let U, be the neighbourhood system of .
Then (C'(z,U))veu, is a family of closed subsets of [—¢, ¢] with the
finite intersection property. Hence C'(z) = [\ C(z,U) # (. There-

Uely

fore C'(z) is a nonempty, closed and bounded set in R. Denote by
D(z) = maxC|(z).

The set B is a F, set of the first category so B = |J F,,, where F),

n=1
are closed nowhere dense sets and F,, C F,4; for each n € N. Put
Iy = 0. Now define a function f: X — R by

g(z), if z € X\ B,
f(z) =< D(z), if € BNE,
D(z)+ 1L, ifze (F,\F.-1)\E.
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We shall show that C'(f) = C, E(f) = F and A(f) = A.
1) Let z € X \ A. Then lim inf wg(z) = a > 0. Thus there is an

open neighbourhood U of z such that U C X \ A and w,(u) > 5 for
each u € U. This yields d(f(V \ B)) > § for each neighbourhood V'
of u,i.e. z € A(f). We have thus

(1) XN\NACXN\A(S).
2) Let 2 € B. Then wy(z) =2 w,(z) > 0 and
(2) B C X\C(f).

3) Let z € C = A\ B and let ¢ > 0 and L < £. Then
wy(2) = 0 and hence there is an open neighbourhood U of z such that
d(g(U\ B)) =d(f(U\ B)) < . Since z ¢ F,, the set U\ F,, is an
open neighbourhood of z.

Let y € U\ F,.

If y € U\ B, we have |f(y) — f(z)| < e.

If y € B, there is m > n such that y € F,, \ F;,—1. Since D(y) €
C'(y,U) and B is co-dense there is z € U\ B such that | f(2) - D(y)| =
l9() - Dly)| < L.

If y e BN FE, we have

£0) - £@)| = D) - @) < 1D() - 1(2)

HIG) ~ S < 4 <
If y € B\ F, we have
£) - F@)] = DG+ =~ )] < 1DG) - F(2)

HIG) ~ f@)+ - <
Therefore for each y € U \ I, we have |f(y) — f(z)| < ¢ and
(3) C c(f).

4) Let z € BN E. Let U be a neighbourhood of z, let ¢ > 0 and

1 < £ Then f(z) = D(z) € C(z,U) and hence there is an open

nonempty GG C U such that ¢(G\ B) = f(G\B) C (D(z)-21, D(z)+

n
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L1). The set G\ F,, C U is open nonempty. Let y € G'\ F,.
If y € G\ B, we have | f(y) — f(z)| < L < e

If ye B,y € Fy, \ F,_1 for some m > n. Then there is z € G\ B
such that |f(2) — D(y)| < 5. This yields [f(y) — f(2)| £ |f(y) -
D)+ |D(y) — f(2)| +1f(2) — f(z)] < £ + L+ L <. Therefore

(4) BNEC E(f).

5) Let z € B\ E. Then z € F,,\ F,,_; for some n € N. Therefore
f(z) = D(z) + L. Since f(z) ¢ C(z) there are a neighbourhood V'
of f(z) and a neighbourhood U of z such that for each nonempty
open set G C U there is t € G'\ B such that f(t) ¢ V. Therefore
z ¢ F(f) and

(5) B\ EC X\ E()).

6) Let z € B. Let € > 0 and let U be a neighbourhood of z. Since
lim_}nf wy(u) = 0, there is u € U\ B such that w,(u) < g. Thus there
is an open neighbourhood V' C U of u such that d(f(V \ B)) < £.
Let % < . Then V'\ F), is an open nonempty set. Let y, 2 € V' \ F,.
If y,z € V\ B, we have |f(y) — f(2)| < e.

If y,z € B, there are k,m € N, k,m > n such that y € F,, \ F,,_1,
z € Fy \ Fy—1. Then there are y;,z; € V \ B such that |f(y1) —
D(y)| < &, 1f(51) ~ D(3)] < &. Hence |f(3) ~ £(2)| £ | f(y) — D(y)|+
|D(y) = Fly) |+ [f(y1) = F(z0)| + | F(21) = D)+ [D(2) = f(2)] <
stitits+p<e

Similarly for y € B and z € V' \ B we have |f(y) — f(2)] < e
Therefore we have

(6) B C A(f).

Combining (1), (2) and (3) we get C' = C'(f).

Combining (1), (3), (4) and (5) we obtain E' = E(f).

Finally, (1), (3) and (6) imply A = A(f). &
>

What topological spaces do satisfy the condition (D)7

LEMMA 2. The condition (D) implies (E).

Proof. Let FF = |J F,, where F, are closed nowhere dense,
n=1
F, C F,41 for each n € N and F is co-dense. Put W, = X \ F,,.
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Then (Wn)n is a nonincreasing sequence of open subsets of X and
B = ﬂClW \ ﬂWn_Flscodense Let g : X\ B — R be

a bounded function satlsfylng (i), (ii) and (iii). Then evidently g is
continuous and wy(z) > 0 for each z € F.

PROPOSITION 2. Let X be a resolvable perfectly normal topolog-
ical space. Then the conditions (D) and (E) are equivalent.

Proof. Let (W,,), be a nonincreasing sequence of open subsets
of X such that B = ﬂ CIw,, \ ﬂ W, is co-dense. Then B is a

=1
F, set of the first category and hence there is a bounded continuous
function k£ : X \ B — R such that wi(z) > 0 for each z € B. Let
X = X1 U Xy, where X; and Xy are disjoint dense. Further there is

a continuous function & : X — [0, 1] such that A71(0) = ﬁ ClW,,.

Now define a function g : X \ B — R by

_J h(z)+ k(2), if z € Xy,
9(@) = { k(z), if 2 € X,.

Then ¢ is bounded and we shall show that it satisfies (i), (ii) and

(ii).

(i) Letz e X\ ﬂ CIW,. Then h(z) = a > 0. Since h is

n=1

continuous there is a neighbourhood U C X \ ﬂ CIW,, of z

such that 2(U) C (%,%). Put n = 2. Let G C U be an
arbitrary open set. Since k is continuous at x we can assume

that k(U) C (k(z) —n,k(z)+7n). Let y e GN Xy, z € GNXa.
Then

% < h(y) < |h(y)+k(y)—k(2)[+]k(y)—k(2)] < [9(y)—g(z)|+2n.
This yields |g(y) — g(2)| > § and d(g(V)) = d(¢g(V \ B)) =2 .
Therefore

ligl_}grglf wyl(u) 2

o
Z>O‘
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(i) Let z € Oﬁ W,. Let € > 0 and U be a neighbourhood of z
n=1

such that d(k(U\ B)) < 5. Then d(g(U\ B)Nh~1([0,5)))) < ¢

and hence wgy(z) = 0.

(ii) Let z € B. Then wy(z) = a > 0. Hence for each neighbour-
hood U of z we have d(k(U \ B)) > 2. Further there is a
neighbourhood H of z such that d(h(H)) < §. Let U be an
arbitrary neighbourhood of z. Then there arey,z € (HNU)\B
such that |k(y) — k(z) > 22

If y, z € X1, we have

3a

7 <k = k()] = 1k(y) — 9(v) + 9(y) = 9(2) + g(2) — k(2)]

< [h(y) = () +l9(y) = 9(2)] < T+ lg(w) - 9(2)]

and hence |g(y) — g(2)| > §.
Similarly for y € Xy, 2 € Xy or y, 2 € Xy we have |g(y) — g(2)| > 5.
Therefore w,(z) =2 5 > 0.

Now let n > 0. Then for each y € 27([0,%)) \ B we have
wy(y) < n and hence lim inf wy(u) = 0. &

From Proposition 2 and Theorem 3 we obtain

THEOREM 4. Let X be a Baire resolvable perfectly normal space.
Then (A) is equivalent with (B) and (E).

9

What topological spaces do satisfy the condition (E)?
LEMMA 3. Let f, g, fn : X = R be functions (n € N). Then
0)  wrigle) S wp(e) + (o),
B)  wy(2) Swi(z) +wrig(),

7) ifwp(z) =0, wpeg(2) = wy(2),

8) if f, = f then wy, = wy.
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Proof. We omit the standard proof. &

LEMMA 4. The condition (F) implies (E).

Proof. Let I = |J F,, where F,, are closed nowhere dense and
n=1

F,, C F,4, for each n € N. Let g, : X \ F,, — [0, 1] be a continuous

function such that w,, (z) = 1 for each z € F,, and n € N. Define a

function g : X \ F — R by

)= 34" gn().

Then g is a continuous function.

We shall show that w,(z) > 0 for each z € F. Let € F'. Then
z € F, \ F,_1 for some n € N (where Fy = (). Thus wg, (z) = 0
for each ¥ £ n — 1 and w,, () = 1 for each k& = n. If we denote

00 . n+ .
byt = 3 47'giand t; = > 47'g; then ¢; = ¢ and hence by

i=n+1 i=n+1
Lemma 3 §) and a) we get wy(z) £ Y. 47" = 247", By Lemma
i=n+1
3 v) we have w,(z) = wiy4-n,, (z) and therefore by Lemma 3 3) we
obtain w,(z) > 47wy, (z) — wi(z) 2 247" > 0. &

LEMMA 5. Let X be a perfectly normal locally connected topolog-
ical space. Then we have (I).

Proof. Let I’ be a closed nowhere dense set in X. Then there is
a continuous function h : X — [0,1] such that A~!(0) = F. Define
g: X\ F —][0,1] by

Then evidently ¢ is continuous.

Let 2 € F and let U be a neighbourhood of 2 We can assume
that U is open and connected. Then U \ F is nonempty open. Let
T be a component in U\ F.



POINTS OF CONTINUITY, QUASICONTINUITY etc. 17

We shall show that CIT N F' # (. Suppose, by contrary, that
CIT N F = (. Being a component of a subspace U \ F, the set T is
closed in U\ F, hence TN (U\ F) =CITn(U\ F). Since CIT N F
is empty, the set T is closed also in the subspace U. Simultaneously,
T is a component of an open set U \ F in a locally connected space,
T is open in X. Therefore T is non-empty, closed and open in U.
As U is connected, we have T = U. Soz e UNF =TNUNF =
CITNUNF CCITNF =, a contradiction.

Therefore CIT N F # ( and hence there is 3 > 0 such that
(0,8) C h(T). This yields that there are points u,v € U \ F such
that g(u) = 0 and g(v) = 1. Therefore w,(z) = 1. &

LEMMA 6. Let X be a pseudometrizable space. Then we have

(F).

Proof. Let F be a closed nowhere dense set in X and let d
pseudometrize X. We shall construct sets .S, in this way. Let S; = (.
Assume that we have S; for 7 < n. Denote

T,={ze X\ (FU USZ») vd(z, F) < %}
<n
and

B, ={P CT,:d(z,y) ¢ (0, l] for each z,y € P}.
n

According to Zorn lemma there is a maximal element S, of ,.
Denote by

A= S, B = Santr-

n=1 n=1

We shall show that
(%) ClA=AUPF.

1) Let z € F. Let U be a neighbourhood of # Then there is an
even number n such that S(z,2) C U ( S(u,€) is the open sphere
of radius € > 0 about u). If S(z,2)N S, = 0, then for i < n
we have d(u,v) = 0 for each u,v € S; N S(z,5). Therefore there
is y € S(z,5) NT,. However then d(y,z) > L for each z € S,
and hence S, is not maximal in 9,, a contradiction. Therefore

S(z,2)N S, # 0 and hence z € CIA.
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2) Now let # € CIA\ F. Then d(z, F) > L1 for some n € N. Since
z € ClA so there is a sequence (z;); in S(z,5) converging to z.
However z; ¢ S; for i > n and hence we may assume that z; € S;
for some even j, 7 < n and each k£ € N. Then d(zs, z;) = 0 for each
s,t € N and hence d(z;,z) = 0 for each ¢ € N. Since S; is a maximal
element in 9B;, we have 2 € S; C A. Therefore we have ().

Similarly we can prove that C1B = B U F. The sets S; are
mutually disjoint and hence ANB = (). With respect to (*) we obtain
CIANCIB = F. Therefore A and B are disjoint and closed sets in
X \ F and hence there is a continuous function ¢ : X \ /' — [0, 1]
such that f(z) = 0 for each z € A and f(z) = 1 for each z € B.
This yields w,(z) = 1 for each z € F. &

It is easy to see that all assertions (slightly modificated) are true
if instead of Y = R we assume that Y contains a subspace isometric
with R (e.g. if Y is a (nontrivial) normed linear space). By [7] every
first countable topological space without isolated points is resolvable.
Hence by Lemma 5, Lemma 6, Proposition 1 and Theorem 4 we
obtain

THEOREM 5. Let X be a Baire resolvable perfectly normal locally
connected space (or let X be a Baire pseudometrizable space without
isolated points) and let Y be a metric space containing a subspace
isometric with R. Let C, F A be subsets of X. Then there is a
function f: X — Y such that C = C(f), £ = E(f) and A = A(f)
if and only if C C E C A, C is Gs, A is closed and A\ C is of the
first category.

One can see that if £ = X in Theorem 5, then the assumption
“X is resolvable” can be omitted. Hence we have

COROLLARY 2. Let X be a Baire perfectly normal locally con-
nected space or let X be a Baire pseudometrizable space. Then the
set M is the set of all discontinuity points of some quasicontinuous
function f : X — R if and only if M is an F, set of the first category.

In [10], the question to characterize the sets of discontinuity
points of quasicontinuous functions f :R? — R (or even f: X — R,
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X is a topological space) is posed. It was solved in [6] for X = R2
Our corollary further generalizes this result. Examples 1, 2, 4 show
that this is not true for arbitrary X.

PrOBLEM. Is Theorem 5 true for every Baire resolvable perfectly
normal topological space?

The next example shows that the condition “X is normal” in
Theorem 5 cannot be replaced with “X is T} completely regular”.

LEMMA 7. Let X be a topological space and let (Y, d) be a metric

one. Let f,g: X — Y be quasicontinuous functions. If fla = g|a
for some dense subset A of X, then C'(f) = C(g).

Proof. Suppose that there is z € C'(g) \ C'(f).

1) Let f(z) = g(z). Then there is n > 0 such that for each neigh-
bourhood U of z there is tyy € U with d(f(z), f(tr)) = n. Further
there is an open neighbourhood U of z such that d(g(z),g(y)) < 3
for each y € U. Since f is quasicontinuous at t;;, there is an
open nonempty set G C U such that d(f(tv), f(y)) < 5 for each
y € G. Let z € ANG. Then n < d(f(z), f(tv)) £ d(g(x),9(2)) +
d(f(2), f(tv)) < 7, a contradiction.

2) Let f(z) # g(z). Put n = d(f(z),g(x)) > 0. Then there is a
neighbourhood U of z such that d(g(z),g(y)) < 5 for each y € U.
Further there is an open nonempty G C U such that d(f(z), f(y))
3 for each y € G. Let z € ANG. Then n < d(f(z),g(x))
d(f(z), f(2))+d(g9(2),¢(z)) < 1, a contradiction.

<HIA A

ExaMPLE 4. Let X be the Niemytzki plane. Namely, put P =
{(z,y) eR?:y >0}, L={(z,y) e R?:y =0}, X = PUL. Let T be
the topology on X such that 7 restricted to P is the usual topology.
If z € L and S is any open sphere in P tangent to L at x, then {z}US
is an open set in X containing z (see [2]). The space X is Baire
resolvable Tychonoff perfect locally connected. For each D C L we
put W, = PUD,C =N,y W, =PUD, E=A=,2,ClW, = X.
Then C, E, A satisfy (C). By Lemma 7, if f, g are quasicontinuous
functions and C'(f) # C(g) then f|p # g|p.

However, the cardinality of all subsets of L is 2¢ while the cardi-
nality of all continuous functions on P is ¢ (P is separable). Hence
for some D C L there does not exist a function f : X — R with
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C(f)= PUD, B(f) = A(f) = X.
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