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1. Introduction.

The theory of equidecomposable sets was developed by F. Hausdorff,
W. Sierpifiski, S. Banach, A. Tarski, J. von Neumann and others. After
many particular results published mostly in the Fundamenta Mathematicae
during the years 1914-1924, the first systematic exposition of the theory
was given by Banach and Tarski in the paper [3], which also contains the
celebrated Banach-Tarski Paradox. Many of the results of this period are of
paradoxical nature in that they contradict our geometrical intuition. In fact,

(*)  Lectures presented at the School on Measure Theory and Real Analysis.
Grado (Italy), October 14-25, 1991.

(**) Address of the Author: E6tvos Lordnd University, Mizeum kit. 6-8, H-1088 Budapest
(Hungary).
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these results are nothing but spectacular geometric forms of the “paradox
of infinity”.

It was observed by Galileo Galilei that an infinite set is equivalent to
a proper subset of itself [5]. About 250 years later R. Dedekind realized
that this property characterizes the infinite sets and used it as the definition
of infinity [4].

A simple geometrical interpretation of this phenomenon is provided
by the sets N (non-negative integers) and N* (positive integers); they are
not only equivalent, but also congurent, although N* is a proper subset of
N. In the plane we may find bounded sets with this property. Let C denote
the set of complex numbers. Let ¢ € C be such that |c| = 1 but cis not a
root of unity. Then the sets A= {c" : n€ N} and B = {c" : n € N*}
are bounded (subsets of the unit circle), congruent (a rotation maps A onto
B), and B is a proper subset of A. .

Such an example does not exist in R. It is easy to see that if A,B
are bounded subsets of R, A D Band A ~ Bthen A = B. (A ~
B denotes that A and B are congruent.) However, we can find bounded
subsets of R exhibiting the “paradox of infinity” if we replace the notion
of congruence by that of equidecomposability. We say that the sets ABC
R™ are equidecomposable (or equivalent by finite decomposition) if there
~ are finite partitions A = Uf?:lA,- and B = Uf?:lB,- such that A; ~ B; for
every i = 1,..., k. We shall denote this fact by A ~ B.

Now let & € (0, 1) be an irrational number and put A = {{na} :
n€ N}, B = {{na} : n € B*}, where {z} denotes the fractional part
of the number z. Then B is a proper subset of A and yet A ~ B. Indeed,
denoting A; = AN[0,1-a), A, = AN[l-a,1),B1 = BN[g,1),B; =
BN[0, @), onecaneasily check that By = A +aand B, = A + o — 1.
This implies that [0, 1] ~ (0, 1]. Indeed, putting A3 = B3 = [0,1]\A =
(0, 11\B, we obtain the partitions [0, 1] = U2, 4;, (0, 1] = UL, B;.

A stronger form of the paradox of infinity states that an infinite set can
be decomposed into two subsets, each of which is equivalent to the original.
In 1914 S. Mazurkiewicz and W. Sierpiriski realized that this paradox can
also be exhibited geometrically. They constructed a plane set which can
be decomposed into two subsets which are congruent to the original. The
construction is the following [19]. Let P denote the set of polynomials with
non-negative integer coefficients (including the identically O polynomial), .
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and let c be a transcendental complex number with |c| = 1. We put A =
{p(c) : p € P}, A1 = A+1, A2 = cA. Ttiseasyto prove that A;NA; = 0,
A=A1UA; and A~ A, ~ A,.

One can show that a bounded plane set cannot have this property.
There are bounded plane sets, however, which have a slightly weaker prop-
erty. Aset A C R™ is called paradoxical, if there is a partition A = A;UA,
suchthat A ~ A; ~ A;. It was proved recently by W. Just [7] that there are
bounded plane sets which are paradoxical. (Proof: Let D denote the closed
unit disc and let & = (—1+ iv/3) /2. Then for every z € D we can select
ane(2) € {1,g,£%} suchthat z + e(2) € D. We select £(0) = 1. Let
be a transcendental number with |c| = 1. Let B denote the set of numbers
¥+ ar_1cF~1+. ..+ ag suchthat, foreveryj = 0, ... k— 1 eithera; = 0
or aj = e(ck7 + ap_1ck 714+ 4 aj+1c). Note that 1 € B (if k = 0).
Weput A = BU{0}; then A is bounded, since A C D. Forq € {1,¢,&%}
we put A, = {z € cA : &(2) = n}. One can check, using the fact that ¢
is transcendental, that A = cAU (A1 + 1) U (A + €) U (4,2 + €2) and
cA= A1 U A: U A, are partitions, and thus A is paradoxical.)

However, no “reasonable” plane sets can be paradoxical. Banach
proved in 1923 [1] that the Lebesgue measure on the plane can be extended
to a finitely additive and invariant measure defined on all subsets of R 2.
That is, there is amap p : P(R?) — [0, 0] such that u( A) = A, (A) if
A C R? ismeasurable, and u( AUB) = u( A)+u(B) and u(gA) = p(A)
whenever A, B C R*, AN B = { and g is an isometry of R 2,

Itiseasytosee thatif A, B € R? and A ~ B thennecessarily u( A) =
p(B). Thus, if A is paradoxical, A= BUC,BNC =0,A~ B ~ C,
then p(A) = u(B) + p(C) = 2u(A) and hence either u(A) = O or
u(A) = oo. Since p is an extension of )3, it follows that no measurable
plane set with finite, positive measure can be paradoxical.

As John von Neumann realized in [20], the existence of Banach’s
measure in R 2 is the consequence of the fact that the group of isometries of
R?2 is solvable. Von Neumann proved that solvable groups are necessarily
amenable; they support finitely additive, invariant probability measures.
The isometry group of R is also solvable and hence amenable. Sierpifiski
proved in 1946 that this group has an even stronger property, now called

supramenability, which implies that in R there are no paradoxical sets at
all.
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The situation changes dramatically in R3 and in higher dimensions.
The isometry groups of these spaces are not solvable, not even amenable;
in fact, they contain free subgroups. The consequence of this fact is the cel-
ebrated Banach-Tarski paradox: in R*¥(k > 3) the solid ball is paradox,
moreover, any two bounded sets with nonempty interior are equidecom-
posable.

In the next two sections we shall sketch the proof of these classical
results. In Sections 4 and 5 we describe the role of graph theory (per-
fect matchings of bipartite graphs) and local commutativity in questions of
equidecomposability. Section 6 contains paradoxesinR using contractions
(the so—called von Neumann paradox) and, more generally, Lipschitz func-
tions. In Section 7 we discuss measures on semigroups and give a neces-
sary and sufficient condition for the equidecomposability of sets in abstract
spaces. Sections 8 and 9 deal with equidecomposability using translations.
Here we prove that bounded convex sets of the same positive measure are
equidecomposable.

We shall use the following notation. G,, SG,., SO,,, T, will denote
the groups of all isometries, orientation—-preserving isometries, orthogonal
transformations with determinant 1, and translations of R™, respectively.
Thus SO, is the group of rotations of R? about the origin and SO is the
group of rotations of R3 about axes going through the origin.

The Lebesgue measure in R* is denoted by \,,. The closure, bound-
ary, interior, and cardinality of the set A is denoted by cl 4, dA, int A and
|A|, respectively. The power set of A is denoted by P(A).

We shall say that the group G acts onthe set X if G is a group of bijec-
tions of X ontoitself. The sets A, B C X are said to be G-equidecomposa-
ble, if there are finite partitions A = U%; A; and B = UL, B; and trans-
formations f; € G (1 = 1,...,k) such that f;(A;) = B; forevery i =
1,...,k. We shall denote this fact by ASB. Theset A C X is G-
paradoxical, if there is a partition A = A; U A, such that A £ A £ As.

2. Amenable and supramenable groups.

Let G be a group. We say that g is a non-negative finitely additive
invariant measureon G if 4 : P(G) — [0, 00], u( AUB) = u(A)+u(B)
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and u(gA) = p(A) whenever A,BC G, ANB=0andg € G. Gis
said to be amenable, if there is a non—negative finitely additive invariant
measure p on G such that u(G) = 1. We say that G is supramenable, if for
every non-empty A C G there is a non-negative finitely additive invariant
measure g on G such that u(A) = 1.

Our first aim is to show that G is supramenable.

If G is a group and g;,...,9, € G, then 9i19i; --- s, (31,...,ip €
{1,...,7}) is called a word of length n. The group G is called exponen-
tially bounded, if for every g;,...,9, € Gand e > O there is np such that
for every n > my, the number of different elements of (¢ obtained from
g1,--.,9r as aword of length < nis at most (1 + £)™.

The following two theorems are due to Sierpinski; see [26], pp. 56—
58.

THEOREM 2.1. G is exponentially bounded,

Proof. Each isometry of R is of the form g(z) = az + b (z € R),
wherea = 1 ora = —1. If gy,...,9, € G}, 9i(z) = a;z + b; and
g9 = Gi---Gi,, then g(z) = ax + b, where o = +1 and b = +k;b; +
... & keby (ki € N, ki < m). Thus the number of different b’s is at most
(2n+ 1)" and the number of different isometries of the form Giy - -G, 1S
atmost 2(2n+ 1)* < (1+ &)* if nis large enough.

THEOREM 2.2. If an exponentially bounded group G acts on X then
X does not contain non-empty G-paradoxical subsets. In particular, R
does not contain non—empty paradoxical subsets.

Proof. Suppose that § # A C X is paradoxical, andlet A = BUC,
BNC =0, AR BLC. Then there are partitions A = UL A; = Uj_, 4],
B=U_B;C = Uj.1C; and maps f;,g9; € G such that f;(A;) = B;,
9i(A)) =Cj(i=1,...,r,j=1,...,8). Let Fi(z) = fi(2) (z € A,
i=1,...,7),and F2(2) = gj(z) (z € A}, j = 1,...,s), then F1(A) =
B, F,(A) = C. Itis easy to see that the images of a fixed z € A under the
maps

FyFy,...F;, (i1,...,1p=1,2)

are distinct. Each of these images is of the form hy...hy(z), where
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hi,...,hn € {f1,..., fr,91,...,9s}. Thus the words of length < n with
the letters f;, g; define at least 2" different maps of G, which contradicts
the fact that G is exponentially bounded.

The following theorem is due to Tarski [27]; we shall prove it in Sec-
tion 7.

THEOREM 2.3. Suppose G acts on X and E C X. Then there is a
finitely additive, G—invariant measure p : P(X) — [0, 0o] with u(E) =
1 if and only if E is not G—paradoxical.

THEOREM 2.4. Consider the following properties of a group G.
(i) G is Abelian.
(ii) G is exponentially bounded.
(iii) G is supramenable.
(iv) G is amenable.
Then (i) = (ii) = (iii) = (iv).

Proof. (i) = (ii) can be proved by the argument of 2.1. Every group
may be considered as a group acting on itself, so an application of 2.2 and
2.3 gives (ii) = (iii), while (iii) = (iv) is obvious.

Since there are paradox sets in R? , G, cannot be supramenable. Our
next aim is to prove that G2, or more generally every solvable group, is
amenable. To this end we need the notion of integral with respect to finitely
additive measures.

Lety : P(X) — [0, 0o] be finitely additive, let A C X, u(A) < oo,
and let f : A — R be bounded. If f has finite range then f = zf_l CiX A
where A = A; U ... U A4 is a partition and then we define | ' fdp =
}:,_1 cin(A4;). In general we define [, f = lim, o [ 1 fadp, where f,
has finite range for every n and f, — f uniformly. It is easy to check
that this definition makes sense, and the integral defined in this way has the
following properties:

f (c1fireafa)du = o f fidu+ca / fzdu,l f fdul < sup |fl-u(A) .
A A A A
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THEOREM 2.5. Every solvable group is amenable.

Proof. It is enough to prove that if G is a normal subgroup of H such
that H/G is Abelian and G is amenable, then H is also amenable. By 24
every Abelian group is amenable. Therefore, it is enough to show that if G
is a normal subgroup of H and if G and H/G are amenable, then so is H.

Let 4 and v be non-negative finitely additive invariant measures on
G and H/G, respectively, such that u(@) = v(H /G) = 1. We extend
1 by u(hA) = u(AY(A C G, h € H). This definition makes sense,
since A1, A2 C G, h1Ar = hy A implies h5'hy € G and thus, by the
invariance of u, #( A1) = p(hy'h1 A1) = u(Az). This extension defines
4 on the power set of each coset of G.

Let¢ : H — H/G be the natural homomorphism, then ¢~!(y) is a
cosetof G foreveryy € H/G. Let A C H be fixed. Then 9(y) <f p(AN
¢~1(y)) defines a bounded function on H /G. We put y( A) « [ 16 94v;
it is easy to check that  is an invariant finitely additive measure on H with
y(H) =1.

THEOREM 2.6. Let G be an amenable subgroup of Gy,. Then there is
a non—-negative finitely additive G-invariant extension of )\, to P(R™),

Proof. One can prove (using, for example, the Hahn—Banach theo-
rem), that )\, has a non-negative finitely additive extension to P(R").
Let v be such an extension. Let y be a non—negative finitely additive in-
variant measure on G with 7(G) = 1. Then for every A C R* we de-
fine f4(g9) = v(gA)(g € G). If f4 is not bounded on G then we define
p(A) = oo, otherwise we take u( A) & Ji fadn. 1tis easy to show that y
satisfies the requirements.

COROLLARY 2.7. Thereisa non—negative finitely additive G, —invar-
iant extension of A\, to P(R?2).

Proof. G, is solvable, because in the sequence of groups {identity},
T2, SG2, G, each group is a normal subgroup of the next, and the factor
groups are Abelian.
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COROLLARY 2.8. For every n there is a non—negative finitely addi-
tive translation—invariant extension of A, to P(R™).

Proof. T, is Abelian and hence amenable.

3. The Banach-Tarski paradox.

First we prove that SO; contains free subgroups. This fact has many
proofs (see [30], pp. 15-16). Our proof given below is based on a result on
~ linear fractional transformations which will be used also in one dimensional
paradoxes in Section 6.

Let C = C U {oo} denote the extended complex plane. The linear
fractional transformations are the functions (az+ b) /(cz + d) (a,b,c,d €
C,ad — bc # 0) mapping C onto itself. The set of linear fractional trans-
formations will be denoted by LFT.

The next theorem is due to John von Neumann [20].

THEOREM 3.1. Let the complex numbers ay, by, ck, di (k € I) be
algebraically independent over the rationals, and let the linear fractional
transformations oy, be defined by a(z) = (apz+by) /(crz+di) (k € I).
Then ay (k € I) generate a free group.

Proof. We have to prove that if my,...,m, € Z\{0} and k; #
ki-1(3 = 2,...,r) then @ = of' ... is not the identity map. Itis
easy to check that a(z) = (Az + B)/(Cz + D), where A, B,C, D are
polynomials of ay, by, c dj with integer coefficients, and AD — BC # 0.
If « is the identity map then B = C = 0 and A = D. Since ay, bg, ck,
dy. are algebraically independent, these equations must be identities. This
implies that, if n denotes the number of different indices among k; , . . . , &,
then for arbitrary By,...,B8, € LFT, B;,' ... ;" is the identity map. Let
w(z) = 1/z and 6(z) = z + 2. Putting B = &*wé* (k = 1,...,m),
Br,' --- Br. will be of the form 6™ wé™ w...ws™, where my,...,n, # 0.
The value of this map at z is given by the continued fraction

1 1
2n,4+ T z+2m,

2'n1+
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If £ — oo then this value converges to a finite limit. Therefore this map
cannot be the identity.

Let S denote the unit sphere and let 7 : § — C denote the stere-
ographic projection. We shall need the following fact of complex func-
tion theory: if p is a rotation of S then mpn~! € LFT and is of the
form (az + b) /(cxz + d), where d = @ and ¢ = —b. Conversely, if
a(z) = (az + b)/(cx + d), where d = g and ¢ = —B, then 7 Lo is
a rotation of S. (See [21], p. 55.)

THEOREM 3.2. Let the real numbers ay, by, cx, di (k € I) be alge-
braically independent over the rationals, let

Ak = ak+1bg, By =cx+ idy, Cy = —cp+1dg, Dy = ap —iby (k€ I)

and let the linear fractional transformations «y, be defined by ax(z) =
(Arz + Bk)/( Crx + Di)(k € I). Then the rotations Pk = W_lak'ﬂ (ke
I) generate a free group.

Proof. The numbers Ag, B, Cy, D (k € I) are also algebraically
independent over the rational. Indeed, suppose that there is a finite set
F C I suchthat Ag, Bg,Cy,Di (k € F) are algebraically dependent;
then the degree of transcendence of this system (i.e. the cardinality of a
maximal algebraically independent subsystem) is less than 4 |F'|. Now the
numbers ak, bi, cx,dy (k € F) are algebraically dependent of this sys-
tem and hence their degree of transcendence would be also less than 4 | F|,
which is impossible.

This implies, by 3.1, that the o/ s are independent. Since pf' ... pi =

r
-1 _my m / 1
T o ... ", the gy s are also independent.

THEOREM 3.3. There is a subset E C S such that (i) S can be covered
by four congruent copies of E, and (ii) S contains infinitely many disjoint
congruent copies of E.

Proof. Let a and b be independent rotations of S, and let F denote
the group generated by a and b. We define an equivalence relation on S
by putting z ~ y if there is an f € F such that y = f(z). Then each
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equivalence class is countable. Let C denote the union of those equivalence
classes which contain at least one fixed point of any non—identity element of
F'. Since F' is countable, and each f has exactly two fixed points, C is also
countable. Let H C S contain exactly one element of each equivalence
class. Then every z € S\C has a unique representation of the form g =
f«(y), where f, € Fandy € H.

Let U denote the set of those reduced words with letters a and b which
begin with of (k # 0). We define

E={zeS\C: f, eU}.

Then the sets b"( E) (n € N) are pairwise disjoint, so that (ii) is satisfied.
It is easy to check that S\C C E U a(E). Since C is countable, there
is a rotation ¢ of S such that C N ¢(C) = §. Then «(C) C E U a( E),
C Cc ' (BE)Uc'a(E) andhence S ¢ EUa(E) UcI(E) Uc 'a( B),
which proves (i).

The next result is called the Banach-Schrider-Bermnstein theorem (see
[2] or [30], p. 25).

THEOREM 3.4. Let f be an injective map from A into B, and let g be
an injective map from B into A. Then there are partitions A = A; U A,,
B = B, U B, such that f(A1) = By and g( By) = A;.

Proof. We define a bipartite graph T" on the pair of sets (A, B) by
connecting the points x € A and y € B ifeithery = f(z) or z = g(y).
It is easy to check that every connected component of T is either a cycle
or a path which is infinite in one or both directions. For every connected
component we have either f(CNA) = CNBorg(CNB) =CnNA.
We define A; as the union of C N A where C runs through those connected
components for which f(CNA) = CNB. Weput A; = A\A;, B; =
f(A1) and By = g71(A).

The following statement is a simple but amusing corollary ([30], pp.
25-26).

COROLLARY 3.5. Let D be a disc and Q be a square. Then there
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are partitions D = D1 U D, and Q = Q1 U Q2 such that D, is similar to
Q1 and D, is similar to Q3.

COROLLARY 3.6. LetGacton X. IfA i, CAC X,BiCBC X,

AL B1 with n pieces and A; £ B with k pieces, then A £ B with n+ k
pieces.

THEOREM 3.7. The solid ball in R3 is paradoxical using 11 pieces.

Proof. Let E be a set with the properties (i) and (ii) of 3.3, and let
E* = U{rE : 0 < r < 1}. Then the unit ball is covered by 5 congruent
copies of E* and also contains 10 disjoint congruent copies of E*. From
this and 3.6 the statement easily follows.

Later we shall see that the number of pieces can be reduced to 5.

THEOREM 3.8. If A and B are bounded sets in R* with non—empty
interior, then A ~ B.

Proof. We may assume that the unit ball is contained in both A and
B. Suppose that A and B can be covered by n congruent copies of the unit -
ball. Since both A and B contain 5 n disjoint congruent copies of E*, the
statement follows from 3.6.

4. Decompositions and perfect matchings.

We already saw in 3.4 that in the formulation of theorems about map-
pings the language of graph theory can be useful. Equidecomposability
of sets can also be formulated in terms of perfect matchings of bipartite
graphs. This formulation was used first by D. Konig in [9]. Recently W.
Just described explicitly this approach in [8]. Although Just only mentions
Konig as his predecessor, Banach and Tarski are also among them (see

[28D).

DEFINITION. Let A, B be arbitrary sets. By a bipartite graph on the
pair of sets (A, B) we shall mean a multiset of unordered pairs ( z, y) such
that z € A and y € B. The pairs (z,y) are called lines connecting z and
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y. Note that we allow multiple lines. Also,if ANB #@andz € AN B,
then the loop (z, x) is allowed. We shall use the terms degree, walk, path,
cycle and perfect matching in the usual sense (see [18], pp. xxix—xxxii).
Thus I is a perfect matching, if there is a bijection f of A onto B such that
I'={(z,f(x)) : z € A}.

Let G be a family of functions mapping subsets of X into X, and let
A, B C X. We define a bipartite graph on ( A, B) by

I'e(A,B) ={(3,9) :s€ A,ye B,3f € G, € Domf, f(z) = y}.

The connection between equidecomposability and perfect matchings
is explained by the following theorem. It readily follows from the defini-
tions so we omit the proof.

THEOREM4.1. Let G acton X. For every A,B € X we have AS B

if and only if there is a finite subsystem H C G such that Ty( A, B) con-
tains a perfect matching.

By this theorem, in order to prove the equidecomposability of two
sets, we have to find perfect matchings in some bipartite graphs. The most
- important tool in the search of perfect matchings is the following theorem
due to M. Hall [6] and R. Rado [22]. A graph will be called locally finite,
if the degree of each point is finite. If Y is a subset of the points of a graph
I" then we shall denote by I'(Y") the set of those points of I" which are
connected to at least one point of Y'.

THEOREM 4.2. A locally finite bipartite graph T contains a perfect
matching if and only if [T (Y')| > |Y'| holds for every finite setY of points
of T.

This theorem is an immediate consequence of 3.4 and the following
result.

THEOREM 4.3. Let T be a locally finite bipartite graph on the pair
of sets (A, B) and suppose that for every finite Y C A we have [T (Y)| >
|Y'|. Then there is an injective map f : A — B such that (z, f(z)) € T
forevery z € A.
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Proof. If A is finite then this is P. Hall’s theorem; a simple proof using
induction on |A| can be found in [18], pp. 5-6. Now we tumn to the general
case. It is enough to define an injective f separately in every connected
component of I', and thus we may assume that I" itself is connected. Since
I' is locally finite, this implies that I is countable, let A = {ay, a2, .. .}
Let Ay, = {a1,...,a,} andletT,, = T N (A, x B). Since T, is finite, it
follows from P. Hall’s theorem that there is an injective map f,, : A, — B
such that (z, f,(z)) € T forevery z € A,. Let V; denote the set of
points connected to ax. Then V; is finite for every k, and f,(ax) € V; for
every k and n > k. This easily implies, by successive selections of infinite
subsequences, that there is an injective map f : A — B with the required
property.

In the sequel we shall give some examples of the applications of The-
orem 4.2. The first is a classical result of D. K6nig and S. Valké [10] and
is called “the cancellation law”.

THEOREM 4.4. Let G act on X. Let Ay,...,Ak, B1,...,By C X,
and suppose A; N Aj = B;N B; = §, A,-EA,-, B,-SB,- (i # 7)., and
Uk, A; £ UL | B;. Then A, £ B;.

Proof. There is a finite subsystem H C G such that the graphs
Tg(A1, A), Tp(B1,By) (i = 1,...,k) and Tx(UL | A;, UL B;) con-
tain the perfect matchings M;, N; (1 = 1,...,k) and P, respectively. We
define a graph I on (A, By) as follows: we put (z,y) inT if and only if
there is an ¢ and there are points z; € A;, y; € B; such that (z, z;) € M;,
(zi,9:) € P and (y;,y) € N;. ThenT" C Tys (A1, By) and T is regular
(the degree of each of its point is k). This easily implies that T satisfies
the Hall-Rado condition |[I"(Y")| > |Y'| and hence, by 4.2, T contains a
perfect matching. Obviously, H? is a finite subset of G and thus, by 4.1,
A g B;.

We conclude with a simple lemma which will be used in the next sec-
tion.
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LEMMA 4.5. Let T" be a connected and locally finite bipartite graph.
If the degree of each point of T is at least two and if I contains at most
one cycle, then T contains a perfect matching.

Proof. Let V denote the set of points of I'. By 4.2, it is enough to
show that [T"(X)| > |X| holds for every finite X C V. We shall prove
that there is an injective map f : V — V such that every point p € V is
adjacent to f(p); this will show that I" satisfies this condition.

Suppose first that I" contains no cycle and let a point r be selected. For
any p € V, p # r there is a unique path {r,p1,p2,...,p, = p} connecting
v and p. Since the degree of p is at least two, we can select a point f(p)
such that f(p) is adjacent to p and f(p) # p,_1. We take any point g
adjacent to r and put f(r) = g. It is easy to check that f is injective.

Now suppose that I contains acycle C = {go,q1,-..,qk-1,qk = g0 }-
We define f(g;) = ¢iv1(s = 0,1,...,k—1). If p € C then there is
a unique path {po,pi1,...,pn = p} suchthatpy € Candp; & C (1 =
1,...,n). Since the degree of p is at least two, there i a point f(p) which
is adjacent to p and is different from p,,_; . In this way we have defined an
injective map, and this completes the proof.

S. Local commutativity.

Let G act on X. We say that G is locally commutative provided that
whenever two elements of G have a common fixed point then they com-
mute. The role of local commutativity in the theory of equidecomposability
was discovered by R.M. Robinson in [23]. In this paper he finds the min-
imal number of pieces which are needed to duplicate a ball. Banach and
Tarski in their paper [3] did not specify the number of pieces to obtain a
paradoxical decomposition of the ball. In 1929 von Neumann remarked
that 9 pieces suffice. Sierpiriski used 8 pieces in [25]. Finally, Robinson
showed in [23] that the minimal number is 5. He proved that S is paradox-
ical using four pieces; his proof is based on the fact that the group of the
rotations of a sphere is locally commutative: if two rotations have a com-
mon fixed point then they have the same axis and hence they commute.
As for the applications of local commutativity in questions of equidecom- -
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posability, see [30], Chapter 4. Here we shall prove Robinson’s theorem
through the following result taken from [17].

THEOREM 5.1. Let G be a locally commutative group acting on a set
X and suppose that G is freely generated by the transformations fiyeer, fau
Let A, B, Hy,..., Hy, be subsets of X such that
(i) for every x € A there are indices 1 < i, j < n, % # j such that
z € H; N Hj and f(x) €B, fi(z) € B; and
(i) for every y € B there are indices 1 < i,j < m, i # j and points
z; € HiNA, x; € Hj N A such that fy(z;) = filzj) = .
Then there are partitions A = U, A; and B = Ui Bi such that A; C H;
and f;(A;) = B; foreveryi=1,...,n

Sketch of proof. Let F = {f;|H; :i=1,...,n} and T = Tr(A, B).
We have to prove that I" contains a perfect matching. In order to show
this, it is enough to prove that there is one in any connected component I';
of I' or, that I'; satisfies the conditions of 4.5. Since the degree of each
point of T" is at most n, T'; is locally finite. The conditions (i) and (ii)
of Theorem 5.1 imply that the degree of each point of T is at least two.
Finally, the fact that I'; contains at most one cycle, can be deduced from
the local commutativity of G. For the details we refer to [17].

THEOREM 5.2. S is paradoxical using 4 pieces.

Proof. LetS; = Sx {1} and S, = Sx {2}. Letg; (i = 1,...,4) be
independent rotations of S, and define f; (i=1,...,9H onX =S, US,
by

fi(z,7) = (9i(2),/) (€ 8,i=1,2, j=1,2) , and

filz,7) =(9:(2),3 - (z€8,i=3,4,;=1,2) .

It is easy to check that f; (s = 1,...,4) generate a free and locally com-
mutative group on X. Now we apply 5.1 with A = X, B = 8y, H; =
H; = §1, H3; = H4 = S,. Thus we obtain partitions S; = A; U A2 and
Sz = A3UA4 suchthat f1( A1) Uf2(A2) Uf3(A3) Ufs (As) isapartition
of ;. Taking the projections to S we obtain partitions S = B; U B, and
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S = B3 UB4 suchthat g;(B1) Ug2(B2) Ugs( B3) Ugs(By) is a partition
of S.

Denoting H* = U{rH : 0 < r < 1} forevery H C S, we have
§* = B\{0}, where B is the unit ball. Thus S* = BfUB} = BjUB} =
91(B7) Ug2(B3) Ugs(B3) Uga( B}) gives a duplication of S* using four
pieces. This easily implies that B U B', the union of two disjoint copies of
B, is equidecomposable to the union of B and a singleton using five pieces.
With some more work one can show that B U B’ ~ B using five pieces
(see [30], Theorem 4.7, p. 40).

6. Paradoxes using contractions and Lipschitz functions.

A function f defined on A C R is a contraction, if thereisa g < 1
such that |f(z) — f(y)| < g|z — y| holds for every z,y € A. A map
f : A — R is called piecewise contractive if there is a finite partition
A= A1 U...U A, such that the restriction f|A; is a contraction for every
1= 1,...,n The following theorem was proved by von Neumann in [20].

THEOREM 6.1. For arbitrary intervals 1 and J there is a piecewise
contractive bijection from I onto J.

Proof. Let I; and I, be disjoint subintervals of I. Letcy,...,c, be
real numbers such that, for every z € Ij, 2z + ¢; € int J holds for at
least two distinct 1’s, and, for every y € J, 2(y — ¢;) € int I; holds for at
least two distinct i’s. Let fi, ..., f, € LFT be chosen such that they have
algebraically independent coefficients, and, for each i, f; approximates the
function 1 + ¢; on Ij so well that (i) £;|I; is a contraction, (ii) for every
z € I fi(z) € J for at least two distinct 1’s and (iii) forevery y € J
7 1(y) € I for at least two distinct i’s.

LetG = {fi1,...,fa} and T = T'g(I,J), then the degree of each
pointof " is at least two. Let F be the group generated by fj,..., fx; then,
by 3.1, F' is free. Let C be the union of those connected components of "
which contain at least one fixed point of a non-identity element of F'; then
C is countable. If y € J\C then the connected component of " containing
y does not contain a cycle (because a cycle would give a non—-empty word
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with a fixed point in the component). Thus by 4.5, this component contains
a perfect matching. This is true for every component disjoint from C and
hence I'qa(I; \C, J\C) contains a matching. This implies that there is a
bijection f from I;\C onto J\C which is piecewise contractive (since it
consists of restrictions of fi1,..., f,). Since J N C is countable, it is easy
to prove that there is an injective map g : J N C — I, such that g~! is
piecewise contractive. Then the map g; defined by g1(z) = f~1(z) (z €
J\C), g1(z) = g(z) (z € J N C) is an injective map from J into I. Let
h be a contraction from [ into J. By 3.4 there are partitions I = A; U A3,
J = B1UB; suchthat h( A;) = B; and g1(B2) = A;. Then the function
hy defined by hi(x) = h(z)(z € A1), hi(3) = g7 () (z € Ay) isa
piecewise contractive bijection from I onto J.

COROLLARY 6.2. If A, B are bounded subsets of R with nonempty
interior, then A can be mapped, using a piecewise contractive map, onto B.

Proof. Let I and J be intervals suchthat I C Aand B C J. Let ¢ be
an injective contraction mapping A into int B. By 6.1, there is a piecewise
contractive bijection 1 from I onto J. Let 9y denote the restriction of
to ¥ ~1(B), then 97! is an injective map from B into A. By 3.4, there
are partitions A = A1 U A2, B = B; U B; such that ¢(A;) = B; and
o (A2) = B;. Thus the map f defined by f(z) = ¢(z) (z € A1),
f(z) = ¥o(x) (z € A2) is a piecewise contractive bijection from A onto
B.

Suppose that A can be mapped, using a piecewise contractive map,
onto B. If A(A) and the number of pieces, n, are given then A\(B) can-
not exceed n\(A). In the next theorem [17] we give the sharper estimate
A(B) < nA(A)/2, and also show that this bound is the best possible.

THEOREM 6.3.

(1) Let A,B C R be measurable and suppose that there is a map f :
A — R and a partition A = A, U...U A, such that B = f(A)
and f|A; is a contraction for everyi = 1,...,n Then \(B) < n-
AMA)/2.

(ii) Let A C R be measurable and let J be an interval with |J| < n -
M(A) /2, where nis a positive integer. Then thereisamap f : A —
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R and a partition A = A1 U...U A, such that f(A) = J and f|A;
is a contraction for everyi=1,...,n If A is an interval, then f can
be chosen to be a bijection between A and J .

Let J be an interval with 1 < |J| < 3/2. Then (ii) of Theorem 6.3
implies that there is a bijection from [0,1] onto J which consists of three
contractions; that is, von Neumann’s paradox can be realized using three
pieces. On the other hand, such a paradoxical decomposition does not exist
if only two pieces can be used, as (i) of 6.3 shows.

We shall denote the Lipschitz constant of a function f : A — R by

Lip f = sup{|(f(z) — f(yy))/(x—y)l T, y€EA, zFy}.

In [12], Theorem 4 we proved the following.

LetA= A;U...UA, beapartitionoftheset A C R andletf: A —
R be a map such that f|A; is a Lipschitz function with Lip ( f]4;) < M;
forevery i = 1,...,n Then the inner Lebesgue measure of f(A) is at
most M - A(A), where

o
(1) M = max (Ml,...,M,,,EEM.-) .

i=1

If the restrictions f|A; are contractions, then we may apply this esti-
mate with M} = ... = M, = 1 — g, and obtain (i) of Theorem 6.3. The
next theorem shows that the estimate given above is sharp. It also implies
(ii) of Theorem 6.3 by putting M; = ...= M, =1 —¢.

THEOREM 6.4. Let M,,..., M, be positive numbers and let M be
defined by (1). Then for every measurable set A C R and for every 0 <
d < M -\(A) thereis a partition A = A;U...U A, and there is a function
f : A — R such that f|A; is a Lipschitz function with Lip( f|4;) < M;
foreveryi=1,...,nand f( A) is an interval of length d.

If A is an interval, then f can be chosen to be a bijection.

Sketch of the proof. Suppose firstthat A is an interval, say A = [0, 1].
First we need the local commutativity of some groups of linear fractional
transformations. ‘




EQUIDECOMPOSABILITY OF SETS, etc. 163

LEMMA 6.5. Let the real numbers Gk, bk, Ck,dx (K = 1,...,m) be
algebraically independent over the rationals, let the linear fractional trans-
formations oy, be defined by a(z) = (apz+ bi) [(crz+dy) (k=1,...,n),
and let G be the group generated by o, ..., o,. Then G is locally com-
mutative.

We apply a modified version of the proof of 6.1, where we replace the
linear functions (z/2) + ¢; by the functions ;(z) = (M; —g)z+c(z €
[0,1/2]) and ri(z) = (M; —e)(1 — 1) + ¢; (z € [1/2,1]). Asinthe
proof of 6.1, we approximate these functions by linear fractional transfor-
mation with algebraically independent coefficients, and take the generated
group G. This group is free and locally commutative and hence an appli-
cation of 5.1 yields the statement. For the details we refer to [17].

Next suppose that A C R is measurable and let J be an interval of
length d < M - M(A). Let K be a compact subset of A such that d <
M-\(K),andletI = [0,\(K)]. Since [is aninterval, there is a partition
I'=C1U...UGC, and there is a function g : I — R suchthat g(I) = J
and Lip (g|C;) < M; foreveryi=1,...,n

Let h(z) = MK N(—o00,3]) (z € A),thenLip h < 1. Since K is
compact, it is easy to see that h( K) = I. Thus h( K) C h(A) C I implies
that h maps A onto . Therefore the sets A; = h~(C;) (i = 1,...,n) and
the function f = g o h satisfy the requirements of Theorem 6.4.

We mention some problems concerning the higher dimensional ana-
logues of the previous results. Let A C R * be measurable, and let fiA—>
R* be a map such that Lip( f|A;) < M; for every i = 1,...,n Then the
inner Lebesgue measure of £( A) is at most M - M (A), where

n
(2) M = max (Mf,...,Mf,%—ZMf)
i=1

(see [12], Theorem 4). This implies that (i) of Theorem 6.3 remains valid in
every dimension. We do not know, however, whether ornot (ii) of Theorem
6.3 remains valid in R*. It is easy to see that the value of M given by (2)
is sharp; for every measurable A C R* and d < M - M\;(A) there is a
function f : A — R¥* and a partition A = 4; U... U A, such that Lip
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flAi < M;, foreveryi=1,...,nand f( A) is ameasurable set of measure
d. The problem is that we cannot ensure that f( A) is an interval. (Even if
A is an interval, the proof only gives a set f( A) which is a finite union of
intervals.) Therefore the following problem remains open.

PROBLEM 1. Let I C R¥ be aninterval and let M, ..., M, be given
positive numbers. What is the supremum of the measures of those intervals
J for which there is afunction f : I — R¥ and apartition I = A;U...UA,
such that Lip f|A; < M; foreveryi=1,...,nand f(I) = J?

Of course, we may ask the same question for every measurable A C
R* instead of an interval I. In this case, however, we do not know even
the existence of a piecewise Lipschitz map of the set A onto an interval.
(As we saw above, in R every measureable set of positive measure can be
mapped, using a Lipschitz function, onto an interval.) Therefore we face
the following question.

PROBLEM 2 * . Let A C R¥ be a measurable set of positive mea-
sure. Does there exist a Lipschitz map f : A — R¥ such that f(A) is an
interval? ,

We mention another result in connection with von Neumann'’s paradox
[12].

THEOREM 6.6. Let I, J be intervals with |J| < 2|I|. Then there are
partitions I = U}, A; and J = UL, B;, and there is a contraction f such
that f(A1) = By and B; is a translated copy of A; fori=2,3,4.

One can also show that for |J| > 2|I| such a paradoxical decompo-
sition does not exist, even if we use more parts to be translated (see [12]).

7. The type semigroup.

The type semigroup was invented by Tarski in [27]; it is formed by
the same kind of abstraction as the notion of cardinal and ordinal numbers.

(*)  Added in proof: Recently David Preiss proved that for K = 2 the answer is affirma-
tive. For K > 3 the problem i still open.
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Let G act on X. Roughly speaking, the elements of the type semigroup are

the equivalence classes under the equivalence relation < and if a, b are the
classes containing the sets A and B, respectively, then a + b is defined as
the class containing the set A’UB', where A, B' are “disjoint copies” of A
and B. However, as disjoint copies of A and B not necessarily exist in X,
we have to enlarge X and the action G as follows. Let X* = X x N and
let 2 be the ring of sets ULy (4; x {i}) (n€N, A, C X, i=0,...,n).
If g € G and 7 is a permutation of N then we define the map (g, m) by

(9,mM(z,m) = (g9(z),n(n)) (z€X,neN).

Obviously, the set G* of all these maps (g, ) forms a group of bijections
of X* onto itself, and R is a G*—invariant ring. The semigroup types are

defined as the equivalence classes with respect to the equivalence relation
g in R. If [A] and [ B] denote the classes containing the sets A,B €

R, respectively, then [ A] + [ B] is defined as the class containing the set
91(A) Ug2(B), where g1, g2 € G* are suchthatg;(A) Ng2(B) = 0. Itis
easy to check that this operation is well-defined and makes the set of types
a commutative semigroup denoted by S. If we identify X with X x {0}

then for every A, B C X we have A S B if and only if AZ B. That is,
[Al=[B]ifandonlyif A < B.

In the language of the type semigroup the cancellation law 4.4 simply
becomes the statement no = nb = g = b (a,b € S). Also, Tarski’s
theorem 2.3 is equivalent to the following statement.

THEOREM 7.1. Ifa € S and a ¥ 2a, then there is a homomorphism
¢ of S into the additive semigroup [0, co] such that ¢(a) = 1.

Sketch of the proof. Using the cancellation law and a ¥ 2a one can
show that the elements na (n € N) are distinct. Let S, = {na :ne N}
adF={z€S:2+y=naforsomey €S, ne N}. Then S,, F are
subsemigroups of S. Let ¢(na) = n (n € N), then ¢ has the property that
wheneverzi,...,z,, y1,..., 5 € Seandzi+...+Tp+ 2=y +...+y
forsome z € Fthen ¢(z1) +...+ ¢(z,) < ¢(y1) +...+¢(yr). Thenone
proves, using transfinite induction, that ¢ can be extended to F° preserving
this property. Finally, we define ¢(z) = oo for every z € S\F.
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Our next aim is to give a necessary and sufficient condition for the
equidecomposability of sets [14]. Obviously, if A g Bthenu(A) = u(B)
holds for every G—invariant finitely additive measure y. However, this con-
dition is not sufficient for A 2 B, as the following simple example shows.

Let X = Q be the set of rationals, and let G denote the group of all
translations by rational numbers. Let » be any G—invariant finitely additive
measure on Q. If 4([0,1) NQ) = oo then obviously u([0,11NQ) = oo
I u([0,1) NQ) < oo, then u({z}) = 0 for every z € Q and hence
p([0,11NQ) = u([0,1)NQ). Thatis u([0,11NQ) = u([0,1) NQ)
holds for every G—invariant finitely additive measure . On the other hand,
itis easy to see that [0,1] N Q and [0, 1) NQ are not equidecomposable
(see [26], Theorem 17, p. 48).

We shall prove that if n(A) = n(B) holds for every G—invariant
finitely additive signed measure, then necessarily A £ B. However, in this
criterion we cannot restrict 1 to finite valued signed measures. Indeed, let
X = Z and let G be the group of translations of Z by integers. If 5 is
a finite valued G-invariant signed measure on Z then p(N) = n(N*)
and hence 7({0}) = 0 = 7(@). On the other hand, {0} and @ are not
equidecomposable.

Therefore, by a G-invariant ﬁnitely additive signed measure we shall
mean a map 7 from the subsets of X into R U {co} such that

(D n(g(A)) =n(A) (ACX,g9€G),
and
(2 WAUB)=n(A)+n(B) (ABCX,ANB=0),
where we adopt the convention
cot+oco=00+a=00 (a€R).
THEOREM 7.2. For every A,B C X we have ASB if and only if

1( A) = n( B) holds for every G-invariant finitely additive signed measure
7- ]
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We shall also consider the more general situation where the sets A,B

and the pieces used in the decompositions are restricted to be ina prescribed
ring of subsets of X.

By a space we shall mean a triple (X, G, A), where A is anon-empty
set, G is a group of bijections of X onto itself, and A is a G—invariant ring
of subsets of X. We say that the sets A, B € A are G-equidecomposable
in A, if they are G-equidecomposable in such a way that the pieces used
in the decompositions belong to .A. Amap 5 : A — R U {oo} is said to
be a G-invariant finitely additive signed measure on A, if (1) and (2) hold
with A, B restricted to be elements of A.

Our aim is to characterize those spaces in which the conditions @)
ASBin A; and (i) n( A) = n( B) whenever n is a G—invariant finitely
additive signed measure on A are equivalent. Obviously (i) = (ii) in every
space. We shall prove that (ii) = (i) if and only if the cancellation law
holdsin (X, @G, A).

We shall need the type semigroup of the space (X , G, A); its def-
inition can be obtained from the definition given in the beginning of this
section, with the obvious modifications. Let [ A] denote the type of A € A.

THEOREM 7.3. Let (X, G, .A) be a space and let A,B € A be ar-
bitrary. Then n( A) = n(B) holds for every G-invariant finitely additive
signed measure on A if and only if there is a positive integer n such that

n[ A] = n[ B].

We say that the cancellation law holds in the space (X, G, A) if for
every A,B € Aandn € N*, n[ A] = [ B] implies [ A] = [B]. By
Theorem 7.3, if the cancellation law holds in ( X , G, A), then conditions
(i) and (ii) above are equivalent.

On the other hand, if the cancellation law does not hold, then (ii) does
not imply (i). Indeed, let A, B € A andn € N * be such that ] Al = n[ B]
but [A] # [ B]. Itis easy to see that nf A] = n[ B] implies (ii) and hence
(ii) = (i) does not hold. Thus we obtain the following resulit.

COROLLARY 7.4. In every space, conditions (i) and (ii) are equiva-
lent if and only if the cancellation law holds.
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Since the cancellation law holds if A = P( X), this implies Theorem
7.2. If ¢ is a homomorphism from the type semigroup into the additive
semigroup R U {oo} then

(A E $([AD) (A€ A)

defines a G-invariant finitely additive signed meaasure on A. Therefore
the statement of Theorem 7.3 is an immediate consequence of the following
result.

THEOREM 7.5. Let (S, +) be a commutative semigroup, andleta,b €
S be such that ¢(a) = ¢(b) for every homomorphism¢ : S — R U {o0}.
Then there is a positive integer n such that na = nb.

Sketch of the proof. Let the relation © be defined by @y if nz = ny
for some n € N*. It is easy to see that © is a congruence; that is, © is
an equivalence relation on S such that 2@y implies (z + 2)© (y + 2) for
every z € §. Let S; = S/© be the factor semigroup and let 1) be the
natural homomorphism from S into S;. Obviously, the cancellation law
holds in Sy; i.e. if 7,y € S; and nz = ny forsome n e N* thenz = y. If
¢ is any homomorphism from S; into R U {co} then the composition of 1
and ¢ will be a homomorphism from S into R U {c0}.

Therefore, replacing S by S, if necessary, we may assume that the
cancellation law holds in S. We have to prove that, under this condition,
distinct elements of S can be separated by homomorphisms mapping into
R U {00}. |

We define the relation < on S by putting z < yifthereisaz € S
and n € N* such that  + z = ny. (This relation is transitive and reflexive
but, in general, is not antisymmetric.) The proof of 7.5 is based on the
following lemmas (for the proofs, see [14]).

LEMMA 7.6. () If z,y,2 € S,n€ N* and x + nz = y + nz, then
z+z=y+2 ()Ifz,y,2€ 8,2<z,2< yandz+ 2z = y+ z, then
z=y.

We shall say that a subsemigroup G C S is densé in S if for every
z € Sthereisay € Ssuchthatz + y € G.
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LEMMA 7.7. If G is a dense subsemigroup of S and ¢ is a homo-
morphism from G into the additive semigroup of the reals then ¢ can be
extended to S as a homomorphism.

LEMMA 7.8. Let C denote the semigroup generated by the distinct
elements a,b € S. Ifa < band b < a then there is a homomorphism
¢ : C — (R, +) such that ¢(a) ¥ ¢(b).

Then 7.5 can be proved as follows. We have to show that if o # b then
there is 2 homomorphsism ¢ of S into R U {co} which separates ¢ and b
(recall that the cancellation law holds in S). '

Suppose first that a < b does not hold. Then

0, ifz<b,
oo, otherwise

¢(z) ={

defines a homomorphism such that ¢(b) = 0 and ¢(a) = c0. Ifb< a
does not hold then we can find a separating homomorphism in the same
way. Therefore we may assume that o # b,a < band b < a. Then, by
Lemma 7.8, there is a homomorphism ¢ of C into R which separates a and
b. LetS'={z € §: z < a}. Then &' is a subsemigroup of S in which C
is dense. By Lemma 7.7, we can extend ¢ to S'. Finally we extend ¢ from
S’ to S by putting ¢(z) = oo forevery 1 € S\S'. 1t is easy to check that
¢ is a homomorphism into R U {c0}, and this completes the proof.

We remark that the statements of Lemma 7.6 together with the impli-
cation

(3) nw+kz=ny+kz(nkeN") > z+2=y+2

were proved by Tarski in the special case when S is the semigroup of
equidecomposability types with unrestricted pieces (see [28], pp. 221-222
and [29], Theorem 16.9, p. 223). Tarski proved these statements by gen-
eralizing Konig’s proof of the cancellation law (see note 9 at the end of
[28]). As Lemma 7.6 shows, these assertions are direct algebraic conse-
quences of the cancellation law. As for (3), we can argue as follows. By
(i) of Lemma 7.6, the condition of (3) implies ng + z = ny + z. This gives
mz+2) =(nz+2)+(n—1Dz=(ny+2)+ (n—1)z=n(y+ 2) and
hence we have z + z = y + 2 by the cancellation law.
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8. A criterion for equidecomposability using translations.

Our aim is to give a sufficient condition for A% B (4, B C R¥).
We shall give this condition in terms of the discrepancy of some special
sequences [16].

Let I* denote the unit cube {(z1,...,7%) : 0 < z; < 1 (i =
1,...,k)}. If F C I*is finite, |F| = N, and H C I* is measurable,
then the discrepancy of F' with respect to H is defined as

D(F; H) = .

1
F N H| = X(H)

The (absolute) discrepancy of the finite set F' C I* is defined as
D(F) = sup D(F; J) ,
J

where the sup is taken over all subintervals J C I*.

If o € R then {a} denotes the fractional part of a, that is, {a} = a —
[a]. Forevery z = (21,...,2) € R* we denote (2) = ({z1},...,{z})
Ge. (2) € IFandz — (2) € Z%). Ifu, z,...,24 € RFand N is a
positive integer, then we put

Fy(u;z1,...,29) = {(u+mz1 + ...+ mgzg) :m=0,... N—1
G=1,...,d}.
THEOREM 8.1.  Let Hi, H, be measurable subsets of I* with

M(H1) = M(H2) > 0 and suppose that there are vectors
T1,...,%q € RF such that

(i) the unit vectors ¢; = (0,...,0,1,0,...,0) (i« = 1,...,k) and
Z1,...,Zq are linearly independent over the rational numbers, and
(ii) there are positive constants C, e such that

D(Fn(u; z1,...,24); H) < C-N~1-¢
foreveryueR¥, N=1,2,... andr=1,2. ThenHl%Hg.

We shall need a combinatorial result ([15], Remark 3.3), which we
present here without proof.
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A lattice cube is a set of the form Q = Hi 1 lai, a; + m) where o; €
Z(i = 1,...,d) and nis a positive integer. The length of the side of a
cube Q is denoted by s(Q). The family of all sets which are finite unions
of unit cubes will be denoted by H<. Obviously, every lattice cube belongs
to KD, If H € H'?, then p( H) will denote the surface area of H (i.c.

the d — 1 dimensional Hausdorff measure of H). For every k € N we
put

d
D = {[Tle - 2%, (ai+ D2% 1ai€Z,i=1,...,d} .

1=1

Thus D{? is the set of unit cubes. The system of dyadic cubes is
defined as

co
= (d)
D9 =|JD?.
k=0

THEOREM 8.2. If Sy and S, are discrete subsets of R¢ and
(1) IS:N Q| — aXa(Q)| < C - s(Q)1—*

holds for every dyadic cube Q and r = 1,2, then there is a bijection ¢
from Sy onto Sy such that |¢(z) — x| < M for every x € Sy, where the
constant M only depends on d, C, € and o.

Proof of 8.1. We put o = M (H,) (r = 1,2). If (ay,...,aq9) € R
then we shall abbreviate the linear combination a;z; + . .. + a4zibya - .
Similarly, if (b1,...,br) € R* then b-e will denote the linear combination
b161 + ...+ bkek.

Suppose that z1, ..., 14 satisfy conditions (i) and (ii) of 8.1. Let z =
(z1,...,%4), n=(m,...,ny) and put

S(u)={n€Z% (u+n-z) e H,} (ueR¥ r=1,2).

We shall prove that (1) holds for every lattice cube Q, S, = S,(u) and
r=1,2.
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Let@ = H?=1[ai,a£+ N). Then putting a = (ai,...,aq) and m =
(mi,...,mq), we have

ISr(v) NQ| =
Hn€Z%: a;<m<ai+N(i=1,...,d), (u+nz) € H,}| =
{meZ4:0<mi<N(@G=1,...,d), (u+a-z+m-1) € H} =
|Fy(u+a-2; 21,...,24) N Hy|.

Consequently,

1
mlSr(U) ﬂQ|—Ol = D(FN(U:"‘ a 'm;ml,---,xd);Hr)

and hence (1) follows from condition (ii) and from »4(Q) = N<.
Thus, by 8.2, there is bijection ¢, from S;(u) onto S2(u) such that

(2) |pu(2) — z| < M for every z € S1(u)

where the constant M only depends on d, C, € and «. The important point
here is that M does not depend on u.

Let G denote the additive group generated by z,, ..., 74 and the unit
vectors ey = (0,...,0,1,0,...,0) (¢+=1,..., k). We define the equiv-
alence relation ~ by

21 ~v2p 21 —22€EG (21,22 e R¥ .

Let E be an equivalence class and let an element v € E be selected. Then
every element z € E has a unique representation of the form

z=u+n-s+m-e (n€ZimelZk) .

Ifz€ Hy,then(u+n-x) € Hy and hence n € S1(u). Let ¢, (n) =
. Asr/ € S»(u), we have (u+ 7 -z) € H, and hence there is m’ € Z*
suchthat u+ o -2+ m/ - e € Hy. Let x4(2) “f w+ 1 e Then Xu 1S
a well-defined map from H; N E to H, N E. (Note that m’ is uniquely
determined). As ¢, is a bijection from S;(u) onto S>(u), X, is a bijection
from H; N E onto H, NE.
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By (2), |7 — n| < M. Since z, x,(z) € I*, we have |(# — ) -z +
(m' —m) -e| = |xu(2) — 2| < Vk. This implies

Im' —m| < |(m' —m) -e| < Vk+ (W —n) -z| < VEk+ M -max |z, .
)

We have proved that forevery z € H; there are vectorsa € Z%¢and b € Z *
such that

(3) lo| < M, |b| < Vk+ M -max |z ,

and x,(2) =2+a-z+b-e.

Let {d; }£, be an enumeration of the vectors a-z+ b-¢, where @ € Z¢
and b € Z* satisfy (3). We have proved that for every z € H; N E there
is 1 <t < K suchthat x,(2) = z+ d;. Since the equivalence class
E was selected arbitrarily and d; € G for every t, this implies that there
is a bijection x from H; onto H, such that for every z there is a t with
x(2) = z+ d;. Let

Ai={zeH :x(2)=z+d}(t=1,...,K) .

Then UZ | A; and UL (A; + d;) are disjoint decompositions of H|
and H>, respectively, and this completes the proof of the theorem.

9. Two applications: Cavalieri’s principle and circle-squaring.

We shall need the following discrepancy estimate.

LEMMA 9.1. For almost every z1,...,xq € I* and for every e > 0
there is a constant C > 0O such that

D(Fy(u; 31,...,34)) < C-(log N)*dte . y—¢

holds for every u € R¥ and N = 2,3, ...

This lemma is an easy consequence of the Erdos—Turan-Koksma for-
mula ([11], p. 116) and an estimate given by W. Schmidt on sums of frac-
tional parts of some special sequences ([24], p. 517). For the details, see
[13] Section 8 and [16] Lemma 4.
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Let A be a measurable subset of R?. By Fubini’s theorem, )z (A) =
f A1(AY)dy, where AY = {z : (z,y) € A}. This implies that if A,
and A; are both measurable and \;( AY) = X1(AY) holds for every y then
M (A1) = A (A2). (This statement is sometimes referred to as Cavalieri’s
principle.)

As an-application of the one-dimensional variant of 8.1 we shall prove
that under suitable assumptions on the sections A}, A}, the condition
M(AY) = Mi(A4Y) (y € R) implies that A; and A, are equidecompos-
able. The measurability of the sets A; and A; is not required.

THEOREM 9.2. Let A1, A, be bounded subsets of R%. Suppose that
there are positive numbers k and 6 such that, for every y € R,
(i) the sections AY and A% consist of at most k intervals, and
(i) either A = A = D or \i(AY) = X\1(43) > 6.
Then A, and A are equidecomposable using translations.

Proof. By 9.1 we can select real numbers z,y such that
D(Fn(u;z,9)) < C -log* N/N? for every u € R. By (i), this im-
plies that D( Fiy(u; z,9); AY) < k- C -log* N/N? forevery u € R and
i=1,2. According to 8.1, this implies that AY and A} are equidecompos-
able using translations by the numbers njz+ np y (|m |, |m2 | < M), where
M only depends on M(A}). Since this is bounded from below by (ii), M
does not depend on y. This implies that A; and A, are equidecomposable,
using the translations by the vectors (m z + my,0) (|m|, |n2| < M).

THEOREM 9.3. If A1,As C RF are bounded convex sets with
MAD = M(Az) >0, then A} %5 Ay .

Proof. We may assume that A1, A, C I*. If F C I* is a finite set
then we have D(A;; F) < C - D(F)!/k (i = 1,2), where the constant
C only depends on k (see [11], Theorem 1.6, p. 95). Let d > k, then an
application of 8.1 and 9.1 proves the theorem.

A similar argument shows that the convexity of the sets can be re-
placed by the property that the box dimension of the boundary of the sets
is less than k. For k = 2 this condition is satisfied, for example, if the sets
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are Jordan domains with rectifiable boundary (see [16]).

If H C [0, 1] then the box dimension A ( H) of H is the infimum of
the numbers « such that

1—1

n

G:1<i<n B0 [0 oo
if m is large enough. It follows from [16] Theorem 3, that if H C [0 , 1]

and A(0H) < 1 then H is equidecomposable to an interval. C.A. Rogers
asked whether or not the set

A= (L2)0 (L3 o(Z.2),
~\3’3 8’9 27°27) "
is equidecomposable to (0,1/2) ([30] pp. 119 and 230). It is easy to

check that A(GA) = 0 and hence, by the result quoted above, the answer
to Roger’s question is affirmative.

The set
* /1 1
b= H (-2—17,’ 2n—1 )

is also equidecomposable to an interval, since A (9B) = 1/2. We do not
know, however, whether or not every union of a convergent sequence of
intervals is equidecomposable to an interval. *
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