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SOMMARIO. - Sia CL(X) la famiglia di tutti i sottoinsiemi chiusi non vuoti di
uno spazio di Tychonoff X con una base d uniformita compatibile V e una
prossimitd compatibile 8. In questo lavoro si studiano le relazioni esistenti
tra varie topologie di CL( X)), dette ipertopologie, e cioé: le ipertopologie
di Fell, Wijsman, della palla prossimale, della palla, prossimale, localmente
finita, prossimale localmente finita, di Hausdorff, di Vietoris, etc. Benché il la-
voro contenga un buon numero di risultati nuovi, esso si presenta anche come
un lavoro di rassegna. La ricerca delle condizioni sotto le quali le suddette
ipertopologie sono a due a due uguali, produce interessanti caratterizzazioni
di proprieta topologiche ed uniformi di X . Alcune di queste proprietd sono
la compattezza, la pseudocompattezza, la totale limitatezza, I’ equinormalita,
etc. Questi risultati generalizzano alcuni dei risultati contenuti in un recente
lavoro di Beer, Lechicki, Levi e Naimpally intitolato “Distance functionals
and suprema of hyperspace topologies” .

SUMMARY. - Let CL(X) denote the family of all nonempty closed subsets of
a Tychonoff space X with a compatible uniformity base V and a compatible
proximity 8. In this paper a study is made of the relationships that exist among
various topologies on CL( X)), called hypertopologies, viz: Fell, Wijsman,
Proximal ball, Ball, Proximal, Locally finite, Proximal locally finite, Haus-
dorff, Vietoris, etc. Although the paper contains several new results, it is also
a survey. Investigations of conditions under which the above hypertopolo-
gies are pairwise equal, yield interesting characterizations of topological and
uniform properties of X . Some of these properties are compactness, pseudo-
compactness, total boundedness, equinormality, etc. These results generalize
some of the results contained in the recent paper “Distance functionals and
suprema of hyperspace topologies” by Beer, Lechicki, Levi and Naimpally.
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1. Introduction. Let (X, 7) be a Tychonoff space with a compatible

uniformity generated by a family of pseudometrics P. Foreach d € P and
eache > 0, we set

U(d,e) ={(z,9) € X x X : d(=,y) < €},

V(d,e) = {(z,y) € X x X : d(z,y) < €}.
ThusU = {U(d,e) : d € P,e € Q*}and V = {V(d,e) : d € P,e €
Q*} are respectively open and closed bases for the uniformity generated by
P. Incase X is metrizable with a compatible metric d, we choose P = {d}

and clearly i/ and V are countable.

Let § = 6(U) = 6(V) denote the ( EF)-proximity on X induced by
U orV viz:

AéB iff for each U e U, U[AINB+#0.
In the metric case, we set
d(A,B) = inf {d(a,b) : a € A,b € B}
and note that
AéBiff d(A,B) =0
We also write A < Bfor A §(X — B).
In addition to §, we also consider the LO-proximity § on X, where
AsBiff CLANCIB#0.

By Urysohn’s Lemma, §p is E'F' iff X is normal.
Let CL(X) denote the family of all nonempty closed subsets of X.
ForAC X and @ C P(X) we set:

A ={FeCL(X):FNA#0}.
A*'={FeCL(X):FCA}.
A" ={FeCL(X):F <K A}.

Q ={FeCL(X):FNA#0foreach A€ Q}.
Q' = {F e CL(X): FCUQ}.

T ={FeCLX):FKUQ}.
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Let K denote a compact subset of X. CL(X) is often called a hyperset
and any topology on CL( X) is called a hypertopology. In this paper, we
study the relationships that exist among the various hypertopologies on
CL(X) and their relationships with the topolog1ca1 uniform and proximal
properties of X.

Our references are: for topology [Ke], [W1]; for proximity [NW]; for
hypertopologies [Mi], [BL] and [BLLN] where further references will be
found.

2. Fell Hypertopology 77 = 77- V Tp+.

Here 7p- is generated by the subbase {V~ : V € 1} and 75+ is
generated by the subbase {W* : W € n with W* compact}. It is known
that (CLo(X), 77), where CLo(X) is the family of all closed subsets of
X, is always compact and it is Hausdorff iff (X, np) is locally compact.
(see [Fe]). We note that 77 depends only on 7 and not on I/ or V.

3. Wijsman Hypertopology 1w = 7y~ V1p-.

Originally 7w = 7w (d) was defined on a metric space (X, d) as the
weakest topology on CL(X) such that foreachz € X, themap A —
d(z,A) from CL(X) — R is continuous. In terms of convergence, we
can split 7y into 7~ and T+ .

(3.1) A= (mw-)-lim A, iffforeachz € X, e > 0 if AN S:(z) # 0,
then eventually A, N S.(z) # @. It turns out that 7y~ = 7p-.

(32) A= (1w+)-lim A, iffforeachze X,e>r>0 1fAﬂS's(:z:) =0,
then eventually A, N Sy(z) = 0.

In (3.2), one may use closed balls for open spheres. To generalize the
Wijsman convergence to the uniform case, we set - = 7p- or replacing
Se(z) by U(x) where U € U. In order to extend the 7+ convergence to
the uniform case we need the following
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(3.3) DEFINITION. For each V' € V, we say that V! € V is composably
containedin V iff thereisa V" € Y suchthat V' o V' C V.

In the sequel, (A,) always denotes a net of elements A, € CL(X )
with nin a directed set D.

(34) A = (1w+)-lim A, iff foreachz € X,V € V and V' composably
contained in V, if A NV (z) = §, then eventually A, N V'(z) = 0.

(3.5) A = (7w)-lim A, iff A = (7+)-lim A, and A = (7-)-lim A,,
(See [Wi]).

Altemnatively, i can be defined as the weakest topology 7on CL( X)
such that foreachz € X,d € P, A — d(z, A) is continuous. Thus 7
is Tychonoff. In [LL] it is shown that even uniformly equivalent metrics
on X may give rise to different plus Wijsman topologies. They have also
shown that 7w/ (d)* = mw(p)* for uniformly equivalent metrics if each d-
ball # X is totally bounded. It easy to extend this result to uniform spaces.

(3.6) REMARKS. Let (X,d) be a metric space and dj; = min{d, M},
M > 0 be the uniformly equivalent metric on X. If d is unbounded,
then dys has fewer spheres than d and so 7 (dyr) C Tw(d) and they are
equal iff d is B-T'B ([LL]). Hence

w(d) = sup{Tw(dm) : M >0} .

4. The Ball Hypertopology (see [FLL], [Be]).

Here 75- = 7y~ = 7p+ and 73+ is generated by {[V(z)°]* : V € Y,
x € X}. 78 = 18(d) = 18- V 78-. It follows from [LL] that 75(d)* =
78(p)™ for two uniformly equivalent metrics if each d-ball # X is totally
bounded. This result can be extended to uniformities.

S. Vietoris Hypertopology (see [Vi]).

Here 7y- = 13- = mw- = 7p- and 7y« is generated by {G* : G €
T }. v = Ty- V 7v+ depends only on 75 and not on Y/ or V. 7y, discovered
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by Vietoris in the early twenties, is one of the earliest hypertopologies along
with the Hausdorff metric hypertopology (see Section 11) and has been
extensively studied, see [Mi], [Ke], [BL].

6. Locally finite hypertopology.

7LF- is generated by {Q~ where Q is a locally finite subfamily of
}. TLp+ = Ty+. TLp = TLp- V Ty« depends upon 7 only and not on I/ or
V. This has been studied by [Ma], [BHPV], [NS], [DNS]. It is known that
(X,m) is normal iff its fine uniformity generates 7pr via its Hausdorff
uniformity ([NS]). In the case of a metric space (X, d), 1F is the sup of
all Hausdorff metric topologies corresponding to compatible metrics on X
([BHPV]).

7. Fell, Wijsman, Ball, Vietoris, locally finite hypertopologies.
The following is true:
(7.1) THEOREM. 77 C T C 78 C 7 C Ty.p.

Proof. Each of the above inclusions, except perhaps the first one, is
obvious. To show that 77 C 7 we need only to prove 7p+ C 7+. Sup-
pose A = (mw+)dim A, and A € [K°], K compact. Then there is a
V € Vsuchthat V2[ AINK = @ and since K is compact, K C {UV () :
1 <i< n}, 3 € K. Since A = (1y+)lim A, and AN V2[K] = 0,
eventually A, N V(z;) = @ foreachi,1 < i < n. Hence eventually
A, €[K°* ie. A= (7p+)-1im A,.

We now provide examples to show that every inclusion can be strict.

(7.2) EXAMPLE. 7 # 7.

X =1lw, A= {2e1}, An = {2e1,€n}. d(6,4) = 2, d(6, A,) = 1
and s0 A # (7w)-lim A,. Suppose A € {NG; :1<i< m}N[K°*,
where G; € 1, K is compact. Then A, € (NG7 : 1 < i < m}. Since



COMPARISON OF HYPERTOPOLOGIES 145

{ex} has no cluster point, {e,} is not frequently in K i.e. it is eventually
in K°and so A, € [ K°]* eventually. Thus A = (7x)-lim A,.

(7.3) EXAMPLE. 1wy # 7. ([Bel)

X ={0}UFU{e1+es:n>1} C 1y, where F = {(n+ 1) /ne; +
1/2e,:n> 1}

Fa=FU{e1+e;: k> n}. FNB1(6) = 6, but F N B1(6) 7 0,
so F  (7g)-lim F,. But F = (1)-lim F,.

(7.4) EXAMPLE. 15 # 1v.

X = R,A = {0}, A, = {0,n}. Here A = (7p)-lim A,, but
A# (1v)-lim A,.

(7.5) EXAMPLE. 7 # 1.
X = R. Inevery 1y-nbhd of X € CL(X), there is a finite subset
of X. On the other hand if Q is an infinite locally finite open cover of X

which has no finite subcover, then there is no finite set that is in @~ which
is a 7, p-nbhd of X.

8. Proximal Ball Hypertopology 735 = 755( V).

This is a new hypertopology patterned after 75. We set 7g5- = 7p- =
Tw- = Tg- = Ty- and 7+ is generated by {[V(2)°]** : z € X,V € V}.
Clearly, 755 depends upon V, a fact that will be pursued in some detail here.
If (X, d) is a metric space, and for M > 0, d)y = min{d, M } is the
uniformly equivalent bounded metric on X, then from [LL] and Section 13
it follows:
(8.1) mw(dy) C w(d) C 785(d) C 7.
(82) Tw(dum) C 1Bs(dm) C TBs(d) C 7.
8.3) mw(d) ¢ 15(dp) for some M > 0 if d is not B-T'B.
84)  T5(d) = {sup 85(dy) - M > 0}.
(8.5) Ifdis B —TB, then w(du) = w(d) = TBs(dur) = 785(d).

(8.6) Ifforall M > 0, nw(dy) = Tw(d) or 185(dy) = T85(d), then
dis B-T'B.
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9. Proximal Hypertopology 75 = 75(V) = 75- V 75-.

This was introduced in [Na] and then studied in [BLLN], [DNS] and
[BDN]. We set 75- = 75- = 7p- = Ty~ = 78- = 7y- and 73+ is generated
by {G™ : G € n}. Clearly 7; is the same for all proximally equivalent
uniformities. We note that 7v = 75, and if §; < &, , then 75, C T, if 81 is
EF ([DNSD.

In [BLLN] it was shown that 73(d) is the sup of all 7( p) where p is
uniformly equivalent to d. From Section § it follows that
©.1) 75(d) = sup{mas(p) : p ~ d}.

10. Fell, Wijsman, Proximal Ball, Proximal, Vietoris.
- The following is true:
(10.1) THEOREM. T CTw C 785 C 5 C v C TLF.

Proof. We need prove only 7 C 75 and 75 C 7.

(i) Suppose A = (7gs+)-lim A,, ANV(z) = Pand V' o V" C V.
A € [V"(z)°]* and so eventually A, € [V'(z)]* ie. AuNV"(z) =0
ie. A= (1w+)-lim A,,.

(ii) Suppose A € G € 7, G € T ic. ACG. ThereisG € ny
suchthat A € G' € G.

‘Then A € G"* C G** and so G* € 7.

We now provide examples to show that every inclusion can be strict.

(10.2) EXAMPLE. 1y ¥ 735
X={0u{(n+1)/nex,: neN}U{(n+ 1)/nezn1 : n€N}U

U{ez,,u ne N} Cl,.

A={(n+1)/nern:n€N}, Ay = {(k+ 1) /kesper : k> n}UA
D(A,B1(8)) =1andso A € [B1(9)°]*.
But D(A,,B1(0)) =0 andso A, € [ B1(8)°1*,ie. A #(7-35+)—
lim A,.
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However, A, N B1(6) = @ foreachn € N and it can be verified that
A = (7y)-lim A,. We also note that 4 = (7B)-lim A,,.

(10.3) EXAMPLE TBs 7 T5.

X =R, A= {0}, A,{0, n}. Here A = (7g;)-lim A,, but A #
(75)-lim A,,.

(10.4) EXAMPLE. 75 % 7y.

X=R,A=N,G°={n—-1/n:neN}. Ac G* and G* € 75
Suppose not, and A € H** C G*. But ASG* and G° C H°® and hcnce
A6 H¢®, contradiction.

11. Hausdorff uniform hypertopology 73,( V) = 7,

In this case we may use either i or V. For each U € I{ we set
(11.1) U = {(A,B) € CL(X) xCL(X) : A C Ul B] and
B C U[Al},and
(112) U={U:U ecu}

U is a uniformity base on CL(X) and 5,(U) = 73 is the topology
induced by & on CL(X) and so is always Tychonoff. U is called the
Hausdorff uniformity on CL( X) induced by Y. In terms of convergence
we write 7y = 7~ V 7+, where
(11.3) A= (m-)-lim A, iff foreachU € U, eventually ACUIA,],
(11.4) A= (my)-lim A, iff foreach U € U, eventually A, C U[ A].

In case (X, ™) is metrizable, let D denote the set of all compatible
metricson X. Ford € D, the Hausdorff metric H4 on CL(X) is defined

by
(11.5) H4(A,B) sup{|d(z, A) — d(z,B)|: z € X}, or

=inf{e >0: ACS(B), BC S:(A)}
= oo if no such ¢ exists .

A comparison with Wijsman convergence shows that A = (w)-
lim A, iff for each z € X, d(z,A,) — d(z,A) pointwise whereas
A= (my)-lim A, iff d(z, A,) — d(z, A) uniformly.
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It is known that if d;,d, are two elements of D which are not uni-
formly equivalent, then my(d1) # m(dz). Also if Y; is TB and U,
is not T'B, then 7 (U1) # m(U2). (See [NW]). It is also known that
1.r = sup{m(d) : d € D}, (See [BHPV]).

12. Proximal locally finite hypertopology 7 zs.

This was introduced in [DNS]. Here
TLF§- = TLF-
TLF& = Ts+.

13. Fell, Wijsman, proximal ball, proximal, Hausdorff, proximal lo-
cally finite, locally finite.

The following is true:

(13.1) THEOREM. 77 C 1w C 785 C 75 C T C T.rs C TL P

All except 75 C 7 and 73 C 71,5 are obvious. We note that 7,5 =
TLF& - ' .

(i) 75 C 7. Since A € G* iffthereisaU € U suchthat U[ A] C G,
it follows that 7+ = 7». A € G-, ANG # 0, thenthereis U € U
such that U[e] C G where a € ANG. Suppose A = (7;-)-lim A, then
eventually A C U[ A,] and so eventually A, NUla] # 0, i.e. A, € G~.
Hence - C m-. Wenote that 75 = 7y~ V 7+, 7v- C T~ and 77i+ C 1v+.

(ii) B C 7prs. Suppose A = U[A] = {B € CL(X) : A C U[B]
and B C U[A]} € 73, U € U. Let U’ € U such that U C U. By Zom’s
Lemma, there exists a maximal set Q C Asuchthatforz,y € Q,z # y
implies (z,y) & U'. Let Q@ = {U'(z) : z € Q} is a discrete family of
open sets. Let G = UW{U"?(z) : 7 € Q}.

Claim A € @~ NG* C U[A]. (Details are in [DNS]).

We now give examples to show that every inclusion can be strict.
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(13.2) EXAMPLE. 75 # 7.
X = R9A= NsAn = {m EN m S n},A = (73—)—limAnand
A= (15)-lim A,, but A # (7-)-lim A, and A # (7)-lim A,.

(13.3) EXAMPLE. 7¢ # 71,p5.

X =R, A =[0,00). Foreachn € N, let A, be a maximal 1/n
discrete subset of A. Then A = (7;)-lim A,. Foreachne N U {0}, let
Q,, be a finite open cover of [ n, n+ 1] each member of which has diameter
less than 1/(n+ 1)2. Then Q = UQ, is a locally finite open cover of A
and clearly for each n, A, ¢ @7, and s0 A # (7r5)-lim A,. Actually
we have shown that 7~ # 7, rs-.

(13.4) EXAMPLE. TLF§ 5‘ TLF.
Example (10.4) shows that G* € 1,p5 but G* € Tpp.

14. Non comparable hypertopologies.

In this section we give examples to show that the following pairs are
not comparable

() 786, 78; (i) 78, 78; (iii) 7B, 7¢; (iv) 7B, TLRS; (V) TV, e (VD) TV, TS

(14.1) EXAMPLES. 735, 5.

(@) 785 ¢ 7B.

Example (10.2) shows that A = (75)-lim A, but A & (735)-lim A,,.

(b) 78 € 785 [Bel.

X={0JUFU{es:neN} C 1o, where F = {(n+ 1) /ne, :
nEN}Y F={(+1)/jej:j<n}U{ej:j > n}. Here F, converges
to F' in 734, 75, 785, Tw but F' # (75)-lim F,.. We note that since 75 C 7
one would expect that 75 C 75 but surprizingly it is not true!

(14.2) EXAMPLES. 73, 75.
(a) Since 75 C 75, (14.1) (a) shows 75 ¢ 73.
(b) (14.1) (b) shows 75 ¢ 7.
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(14.3) EXAMPLES. 73, 7.
(a) Since 755 C 73, (14.1)(a) shows 7y ¢ 7.
(b) (14.1) (b) shows that 75 ¢ 7.

(14.4) EXAMPLES. 13, T1,F5.

(a) Example (7.4) shows that A = (75)-lim A, but A # (TLFs)—
lim A,. Hence 7,55 ¢ 7. Also (7.5).

(b) We now briefly describe the space ¢ (Example 1 N, Page 62,
[PW]). Let M a maximal infinite family of infinite subsets of N such that
the intersection of any two is finite. |

Lety=NUMandletB={(n) :ne NU{{M}US: M eM
and S is a cofinite subset of M} be an open base. The space 4 is pseudo-
compact but zero-sets and closed sets are not separated by (bounded) real
valued continuous functions and consequently is not §-normally separated
(l.c. Page 65). Hence in the uniformity ¥ generated by C(X), 9 is not

C

B-equinonnal. Thus TLF§ = TBS #TB.

(14.5) EXAMPLES. 1y, 73.
(@) 7v ¢ 7¢: Example (14.1) (b).
(b) ¢ ¢ 7v: Example (13.2).

(14.6) EXAMPLES. 7y, 71,55

(2) 7v ¢ Trs. The space T, Example 87 [SS], or (14.4) (b).
(b) 7.rs ¢ 7v. Example (13.2) shows that A = (7v)-lim A, but
A 7! (TLFg)—lim An.

15. B-total boundedness.

(15.1) DEFINITION. Y is B-T'B iff for each U € U, U(x) # X implies
U(z) is T'B. (We also may replace U by V).

Obviously TB = B-TB but Q C R is B-T'B but not T'B nor B-
compact. If d is a pseudometric on X, we set dy = min{M, d} for each
M > 0. Then dy is a bounded metric which is uniformly equivalent to
d. From [LL] Theorems (4.1), (4.2), have the following for a metric space
(X,d).
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(15.2) THEOREM. The following assertions are pairwise equivalent

(a) (X,d) is B-TB.

(b) 1,(d) = 1,(dy) foreach M > 0.

() Tw(d) = 1(p) for each p ~ d.

(d) 785(d) = 185(dpr) for each M > 0.

() 785(d) = Ts(p) for each p ~ d.

The above result extends to uniform spaces by considering the family
{dur } associated with {d : d € P}.

(15.3) DEFINITION. V has B-SP (Strong ball separation property) iff A €

CL(X),z € X,V € V,A §V(z), there exists a V' € V such that
AFV' oV(3).

(15.4) (a) RIVER EXAMPLE. X CR%, X = AUB, A= {(z,y) : y > 1},
B={(z,y) : y<0}d(A,B1(0,0)) =1>0ie. A §B;(0,0). But
AN B14¢(0,0) # 0 foreache > 0. So B-SP property is not satisfied but
is B-T'B.

(b) Every Banach space has B-SP, even if it is not B-T'B (in infinite
dimensional cases).

(15.5) THEOREM. If V is B-T'B or B-SP, then 7y = 75;.

Proof. (a) It is enough to show 7+ = 7g4+. Let VY be B-T'B. Suppose
A= (7,+)-lim A, and A € [V (z)°]**. Then there exists a V' € Y such
that V"*[ AINV (z) = @. Since V(z) isTB, V(z) CU{V'(z:) : 1 <i<
m}, z; € V(z). ANV"(=;) = @ implies eventually A, N V?2(z;) = 0,
1<i<m,ie. A, €[V(2)].

(b) Let YV be B-SP and A = (7y+)-lim A,,, A € [V(2)¢]**. Then
thereisa V' € V suchthat ANV o V() = 0. So eventually A, NV’ o
V(z) =0ie. A, € [V(z)°]H.

(15.6) REMARKS (a) 1, = 75 does not imply V is B-T'B e.g. an infinite
dimensional Banach space.

(b) In a metric space (X, d) consider

(+) ForeachO < € < a, thereis a§ > « such that Bs(z) C
B[ Ba()] (See [FLL]).



152 GIUSEPPE DI MAIO and SOMASHEKHAR NAIMPALLY

(J) Foreach g, o, Bo[ B(7)] = B.+o(x). (This useful condition is a
private communication from G. Beer). |

It is easy to show that (J) = (+) = B-SP = 7, = 7g;.

(c) If A is compact, then A = (7,)-lim A, iff A = (755)lim A,,.

(15.6) COROLLARY If V is B-T'B or B-SP, then 15 C Tg.

15.7) COROLLARY. Consider the following
(a) Vis B-TB.
(b) (V) = 785( V). |
(¢) 785(V) = 185(V') for each uniformly equivalent V'.
(d) 785 C 3.
Then (a) = (c) = (b) = (d).

(15.8) COROLLARY. V is B-SP => (b) = (d).

16. Weak total boundedness.

(16.1) DEFINITION. (X, V) is w-T'B (with respect to F C CL(X) iff for
each A € CL(X) (respectively A € F C CL(X)),V € V, V[ A] # X
implies there exist V; € V, z; € X,1 < i < m, such that if W =
U{Vi(z),1 <i<m},thenA §W,X-W C V[AL, X -V[Al C W.

(16.2) REMARKS.

(2) TB = B-T'B + w-T'B (with respect to F i.e. finite sets).

(b) In metric spaces, w-T'B implies d is bounded. If in addition (J)
[(15.6)(c)] is satisfied, then (X, d) is T'B.

(16.3) THEOREM. (X, V) is w-T'B iff g5+ = Ts+.

Proof. (Necessity) Suppose V is w-TB and A € G* € 7,
A € CL(X). Use (16.1) to get Vi, 3, 1 < 1 < m, W. Then
A € N{[Vi(zdcl*™, 1 < i < m} € 785 and N{[Vi(z:)c]*™, 1 <
1 < m} C G**. Hence 755+ = 75+, Tgs = T5.
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(Sufficiency) Suppose V[A] # X. A € [V[A]°]1* € 7+ = 7gs
and so there exist Vi, z;, 1 < 1 < m, such that A € N{[ Vi(z:)°1™,
1 <i<m}CIVIAI®°I*™. Setting W = U{V;i(z;)1 < i < m} we find
that (16.1) is satisfied.

(16.4) COROLLARY. V is T'B implies 1y, = TBs = 7.

(16.5) REMARKS. If (X,d) is a metric space, then 75(d) denotes the
bounded proximal hypertopology ([BL]). Clearly 7, C 185 C To(4) C 7.
Tw = To(d) iff (X,d) is B-T'B.
™86 = T lff(X,d) is w-TB.
Hence 7, = 73 iff (X, d) is T'B ([BLLN]).

(16.6) EXAMPLES. w-T'B w.r.t. finite sets but neither B-T'B nor T'B.
X=2e}U{(1+1/m)e,:n>2}={an:nEN} Cly
We note that By,1/2(a2) = X — {a1}isnotTBie. X isnot B-TB

Foreachn e N, r > 0, B,(a,) # X, implies X — B,(a,) is finite and
so w-T'B.

17. Total boundedness.

(17.1) THEOREM, Consider the following
(@ (X,V)isTB.

b) = Tw.

©) Ty=1Ts

@ = Cv,(m-=17v-).
(e) m Cr7.

® wCs.

@ m=1.

(h) 7 = 7Bs.
() 785 C 18.
G 785 C 7.
k) 7Bs = TH.
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Then(a) = (b) = (d) = (&) = (2) = () = () = (D = (i)

= (h)
= (J) .

Proof. (a) = (d) ((Mi]). (a) = (g) (NW]). (b) = (c) = (D, (b) = (¢)
=> (d) are trivial and so are the rest of the implications. It is sufficient to
prove (a)' => (b) which follows from (16.4) 7, = 75 and by (g) 5 = 4.

(17.2) REMARKS. (a) If (X, d) is a metric space then (a) = (c) (see (16.5)).
b I(X,V)isTB,thenmrs C 7 = B =T =T C 18 C Ty C

TLF.

18. Pseudocompactness.

We recall that the following are equivalent: (a) (X , 7o) is pseudo-
compact, (b) C(X) = C*(X), (c) each locally finite open family is finite,
(d) each compatible uniformity is T'B ([GJ] 15 Q).

(18.1) THEOREM, Consider the following

(a)
(b)
(©
(d)
(e)
)
(2
(h)
¢))
()]
k)
()]

(X, m) is pseudocompact.
vV = TLF.
T8 = TLFS-
Tw = TLFS.
786 = TLFS-
Tw = TH4.

Tw = T§.

Tw = TBS.
TB5 = TH-
B85 = Tg-

T8 = T™H.
TH = TLFs-

(m) T7LFs C 75.
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(n) 7 C 75.

(0) 7B5 C 18.

P TLrs C 17,

@ ™ Cv.

(r) 7 C 73.

Then(@=®) =)= =(e) = (m) = (1) = (n) = (0);

() = (k) =(D); (a)=()=(g) = (h);
(0 =0 =(;
(m) = (p); (1) =(q).

Proof. See [NS], [DNS].

19. Ball compactness.

(19.1) DEFINITION. ( X, V) is B-compact iff for each V €V, z e X,
V(z) # X implies V(z) is compact.

(19.2) REMARKS. (a) Terms “nice closed balls” or “boundedly compact”
are also used in the literature ([Be], [FLL]).
(b) B-compact implies uniformly locally compact and also B-T'B.

(19.3) THEOREM, Consider the following
() (X,V)is B-compact.
(b) TF = T8.
(© 7% = 78s.
d 177=m7.
© mw= TB.
Then (a) = (b) = (c) = (d) = (e).

Proof. (a) = (b) and (a) = (c). If V(z) = X, then [V()1* = 0. If
V(z) # X, then V() is compact and so [V (z)°]* = [V(z)]* € 75.
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(b) = (d) = (¢) and (c) = (d) => (e) are trivial.

(d) = (a) if V is not B-compact, then there exists V(x) # X and not
compact. There is a net (z,) in V(=) with no cluster points. Hence for
each compact K C X, (z,) is eventually in K°. So for each z € K¢,
(z,) — zin7p+, butif z € V(2)¢, then (z,) 4 z in 7.

(19.4) REMARKS. If (X, V) is B-compact, then 77 = T, = 75 = 8.

20. Ball equinormal.

(20.1) DEFINITION. ( X, V) is B-equinormal iff foreachz € X,V € V,
[V(2)T* = [V (z)1.

(20.2) THEOREM. Consider the following
(@ (X,V)is B-equinormal.
(b) 7Bs = 8.
(c) 18 CTn%.
(d mCn
(e) 78 C TLFs-
Then (a) = (b) = (c) = (d) = (o).

Proof. Clearly (a) = (b) = (c) = (d) = (e).

(d) = (a). If V is not B-equinormal, there exist A € CL(X),V € V,
z € X suchthat ANV (x) = 0 but A§V(z). Thus foreachU € V, there
isanzy € U[Al NV (z). Set Ay = AU {zy} foreach U € V, then the
net {Ay : U € V} — A in 7 butnot in 75. Thus 75 ¢ 7.

(20.3) COROLLARY. (@) Ty, = T implies V is B-equinormal.
(b) If V is B-equinormal and B-T B or B-SP, then T, = 7 = Tgs.
(c) We note that B-compact implies B-equinormal.

(d) R* shows that B-compact + B-equinormal does not imply com-
pact.
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21. Equinormal.

(21.1) DEFINITION ( X, V) is equinormal iff § = 8o.

(21.2) REMARKS. (a) An equinormal space is normal.

(b) A metric space is equinormal iff it is Atsuji i.e. every continu-
ous function is uniformly continuous. Thus an equinormal metric space is
complete and if it is also T'B, then it is compact.

(c) W (IGJ] 5.12) is equinormal and pseudocompact (hence T'B) but
is not compact. It is B-compact.

(21.3) THEOREM Consider the Jollowing
(@ (X,V)is equinormal.
(b) 7 =1y.
© v C (v = 7).
(© v C T1Fs.
® 7185 = 18.
(8 78 C 7.
(h) 78 C 7.
(i) 7B C TIPS
Then (a) = (b) = (c) = (e),
@) =D = (g) = (h) = ().

Proof. Equivalence of (a) and (c) is well known (IMi]). (a) = (b) =
(c) is trivial and so are the rest of implications.

22. Finite ball separation.

(22.1) DEFINITION. (X, V) has F-BS (finite ball separation property) iff
foreachA € CL(X),Gen,ACG implies X — G C U{Vi(z;) 1 <
i<mhViey, g EX-Gand ANVi(z;) = 0.

(22.2) REMARKS. (a) R™ does not have the F-BS property.
(b) W has F-BS, although it is not compact.
(©) V equinormal and T'B implies F-BS.
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(22.3) THEOREM. Consider the following
(@) VY has F-BS.
(b) 78 =1v.
(© % C 8.
(d) 785= .
() Visw-TB.
Then (a) = (b) = (d) = (e) = ().

Proof. Equivalence of (a) and (b) is similar to that of (16.3). (d) = (¢)
= (c) is trivial. (a) = (d). Suppose A € G**, G € 7. Then there exists a
U € U such that U?[ A] € G. By F-BS there exist V; € V, z; € X such
that

X —TUAT € {Vi(z:),1 <i<m}=Wand ULAINW=0.

Clearly, A € N {[Vi(z)]™, 1 < i < m} andif F € N{[Vi(z:)°1*,
1 <i< m}thenF C U[A] C U*[A] < Gie. F € G*. Thus
85 = T-

(22.4) REMARKS. Here we record for reference various relationships that
exist among the properties studied so far.
(a) compact = pseudocompact = TB = B-T'B
= w-T'B.
®TB=TB+w-TB '
(c) compact = T'B + B-compact
= w-T' B + B-compact

= F-BS + B-compact
(d) If (X, d) is a metric space, then B-SP + w-TB = TB

equinormal => B-equinormal
Y |
(e) Compact ya
pY |
B-compact = B-T'B

(f) F-BS = w-T'B.
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23. Tables.

COINCIDENCE OF COMPARABLE HYPERTOPOLOGIES

Hyperspace
Drr=mn
@D m=1
@ v=mnr
@) 77 =1p
()18 =7p
6) 77 = 1v
(N 1w =T1p
@) 177 = 1F
) 185 = 7
(10) 75 = 7
(11) 77 = 7g;
(12) 135 = 77
(I3 s =1p
(14) %5 = 77
(15) 185 = T,
(16) 75 = 7
(A7) 1prs = TLF
(18) 785 = 74
(19) 75 = 71,5
(20) 7y = 71,
(21) 785 = TLFs
Q) =1F
(23) 185 = TL.F
(24) 77 = my

(25) 7y = T ps
(26) 77 = T, ps

(X,7,V)

B—compact

F-BS

pseudocompact

B—compact

F-BS + pseudocompact
compact

equinormal + pseudocompact
compact

w-T'B

equinormal

B—compact

w-1" B+equinormal
equinormal + pseudocompac
compact '
equinormal + pseudocompact
TB

equinormal

TB

pseudocompact

equinormal, V fine
pseudocompact

equinormal + pseudocompact
equinormal + pseudocompact
compact

pseudocompact

compact

metric case

B—compact
F-BS
compact
B—compact
compact
compact
compact
compact
w-TB
Atsuji
B-compact

Atsuji+w-T'B

compact
compact
compact
TB
Atsuji
TB
compact
Atsuji
compact
compact
compact
compact
compact
compact
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1

IMPLICATIONS AMONG COMPARABLE HYPERTOPOLOGIES

=
(1) B-compact e =Ty
(2) B-equinormal +B-TB or B-SP T, =1
() 7 = 78 B-equinormal
(4) equinormal +T'B Ty = Ty

In the metric case they are equivalent to compact.
(5)B-TB or B-SP Tu = Tog
6)TB Ty = T

In the metric case they are equivalent
(7) pseudocompact T = TLFS

EQUIVALENCES AMONG NON COMPARABLE

(1) B -equinonnal T8 = T8
(2) equinormal v C Ty
3)TB T C TV
(4) equinormal+TB T =Ty
(5) B-equinormal 8 C Ty
6)TB ™ CTB
@) B-GQUil’lOI‘l’Ilﬂl-i—TB B = T4

IMPLICATIONS AMONG NON COMPARABLE

=

(1) B-TBor B-SP 785 C 7B
(2) B-equinormal 8 C T
3 TB 75 C 7B
(4) B-equinormal+TB T5= 1T
(5) pseudocompact TLrs C Ty
(6) equinormal v C TLFé
(7) equinormal+pseudocompact TLF§ = Ty
(8) B-equinormal 78 C TLF$
(9) pseudocompact TLFs C B

(10) B-equinormal+pseudocompact TB = TLF§
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