PRAGMATIC ENTROPY FOR FINITELY
ADDITIVE PROBABILITIES (*)

by ANDREA SGARRO (in Trieste) (**)

SoMMARIO0. - Si estende la definizione di entropia a distribuzioni di
probabilita numerabili finitamente additive. L'impostazione scel-
ta & pragmatica (fa uso di teoremi di codifica). L'entropia di
una distribuzione di probabilita finitamente additiva in senso
stretto viene posta pari a + o, poiché la corrispondente sorgen-
te stazionaria senza mewmoria non e comprimibile mediante co-
dici-blocco; in effetti, a parte casi banali, le sorgenti finitamente
additive in senso stretto non sono mai comprimibili mediante
codici-blocco.

SUMMARY. - The definition of entropy is extended to countable fini-
tely additive probability distributions. The approach taken is
pragmatic (makes use of coding theorems). The entropy of a
properly finitely additive probability distribution is set equal to
+ oo, because the corresponding stationary memoryless source
is non-compressible through block-coding; as a matter of fact,
apart from trivial cases, properly finitely additive sources are
never compressible through block-coding.

1. Introduction.

In this note we want to extend the definition of entropy to
finitely additive probabilities. We shall take a pragmatic view of
entropy, in accordance with the original approach taken by Shannon.
Roughly speaking, this means that entropy is defined through
source coding theorems which tackle the problem of «compressing»

(*) Pervenuto in Redazione il 27 ottobre 1982.
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di Elettronica dell'Universita degli Studi - P.le Europa, 1 - 34100 Trieste.
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an information source (a stochastic process). (Later entropy was
interpreted also as a measure of uncertainty; cf. Hin¢in [1], who
inaugurated the so-called axiomatic or functional-analysis approach
to information measures). More precisely, we shall revisit the clas-
sical situation of source block-coding. Our setting requires that the
alphabet of the source (tha range of the stochastic process) be at
most countable; since in the finite case finite additivity is the same
as c-additivity, we shall use only countable alphabets. (Continuous
entropy is a rather intriguing notion; cf., however, [2]). The mathe-
matical analysis will be made extremely simple owing to the follow-
ing fact: codes are finite sets; since one has to evaluate only pro-
babilities of finite and cofinite sets the algebra of finite and cofinite
sets will do; only the probabilities of singletons need to be known.

Our motivation is not only to extend the definition of entropy
to the finitely additive case, but mlso to see how finitely additive
probability distributions (p.d.’s) «work» in problems of «applied
probability»; we cannot claim, though, that our results are of prac-
tical interest to communications engineers. It turns out that sources
ruled by non-c-additive p.d.’s are essentially non-compressible, at
least through block-codes. In particular, the entropy of a (strictly)
non-c-additive p.d. will be set equal to + o, which corresponds to
non-compressibility for stationary memoryless sources. We recall
that also in the c-additive case the entropy of a p.d. can be infinite;
cf. [3] where a simple criterion for the convergence of the entropy
series is given.

The information-theoretic results are contained in section 4.
Section 2 is devoted to some preliminaries on finitely additive
p.d.’s: they are not given as particular cases of measure-theoretic
results since for our algebra the proofs are trivial. Section 3 con-
‘tains an ad-hoc definition of finitely additive sources; problems
relative to a general definition of finitely additive stochastic pro-
cesses are mentioned. The paper aims to be self-contained; standard
references on information theory can be found, e.g., in [4] or in
[5]; for the block-coding of sources cf. also, e.g., [6] or [7]. An
informative but concise exposition of finitely additive p-d.’s is
found in [8]. \

2. Preliminaries.

All p.d.’s are over the algebra § of the finite and cofinite sub-
sets of a countable set, & = {w;}is1, say. Since block-codes are finite
this is the relevant algebra for us; extra probabilities are not needed.

Definition 1: The sum of a pd p is the number

s=s() = Tu(w).
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(We denote by w; also the corresponding singleton; unspecified sum-
mations are over all values of the index). Obviously 0 £ s(n) £ 1.

We give some simple properties of countable p.d.’s.

Lemma 1: Any sequence {t}ing, i>0, T £ 1 identifies a
unique p.d. ¢ over § such that p(w;) = pi.

Proof: If @ is finite set p(d) = X p(w;); if & is cofinite set

n@) =1 — (@ — 8). Clearly p is the required p.d. B

Remark to lemma 1: It is well known that a sequence like that
in lemma 1 with Zyp; = 1 identifies a usual ¢-additive p.d. over the
algebra of all subsets; over the latter algebra, instead, the numbers
u; are not enough to identify a finitely additive p.d. Restricting at-
tention to &, therefore, amounts to consider only that «part» of the
p.d. which is completely described by the probabilities of singletons.

Lemma 2: s(p) =sup p(d) =1—inf p(Q)

é finite d cofinite
Proof: Obvious. N
Lemma 3: s(p) = 1 iff p is c-additive (over &).

Proof: The if is obvious. The only if follows from lemma 1 and
from the first statement in the remark following lemma 1. B

Let U denote the «uniform» p.d. over & which is 0 on finite
sets and 1 on. cofinite sets.

Lemma 4: p=aQ + (1 — a) U, convex combination, where Q
is a c-additive p.d. If p = U, this decomposition is unique over &.
In any case a = s(u).

Proof: If u = U the lemma is obvious with « = s(p) =0, Q ar-
bitrary. In any case, however, one must have
pwi)) =aQ(wi) + (1 —a) U(w;) = a Q(w;)
and therefore, for a > 0, Q(w;) = %u( w;). Summing over all i’s one

obtains o = s(p). The rest of the lemma follows easily from lem-
mal H

Notice that for a properly non-c-additive p.d. p(é) = 1 implies
& cofinite. We are now able to compute probabilities of countable
unions. Assume 4= U &;, i> 1, d; disjoint sets. The only non-
trivial case is when infinitely many &; are not void; then no &; is
cofinite (two cofinite sets are never disjoint) and & is cofinite; then

w(d) = v(Y &) = iEIU(ai) +1—s@)

(use the decompdsition in lemma 4).
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3. Sources.

We shall use a rather ad-hoc' definition of stochastic process,
which bypasses random variables and Kolmogorov’s extension theo-
rem. Since in information theory this convenient approach is rather
familiar, we shall use the information-theoretic term source, which
may sound less committal to some.

Let p be a p.d. over @ = {w;}is1. Let {Tn}xa1 be a sequence of
doubly infinite stochastic matrices with rows labelled in Q" and
columns labelled in ©; a row of T, is a sequence of non-negative
real numbers whose sum is at most one; n > 1. The TI', element of
position (x™,w;) will be denoted by v.(x™, w;). We are now able
to define a sequence of p.d.’s u™ over Q" in the following way:

() prH) (x) o;) = v (xn)) y, (x{"), wi), p» = .

Note that the rows {v.(x™, w;) }is1 of T, for which p™ (x™) =0
are irrelevant.

Definition 2: Let p and {I'.}.s1 be as above. The sequence of
p.d.’s {u™}.n1 given by (+) is called a source over the alphabet Q.
If yn(x™, ;) does not depend on x® the source is said to be me-
moryless; if yn(x™, wi) = p(w;) the source is said to be stationary
memoryless. ﬁ

Clearly a memoryless source is identified by a sequence of p.d.’s
over ,{un}na1; a stationary memoryless source is identified by .

Set s = s(u™); in the memoryless case set s, = s(p:), n > 1;
in the stationary memoryless case set s = s(u).

‘ n
Lemma 5: In the memoryless case s = II s;; in the stationary
i:
memoryless case s = sn,

Proof: Use, e.g., lemma 2. W

Some comments are needed. The p.d.’s p™ are not given over
product algebras, but over the algebras §® made up by the finite
and cofinite sets of Q. In the ordinary c-additive case a «short
description» like ours, which makes use only of p and the T, is
enough to determine the probability of any subset of Qo
This is not so in the finitely additive case. In particular
there is no way to compute marginal p.d.’s since sets like {1} X Q
or @ X {w1} c Q2 say, are neither finite nor cofinite; it does not
even make much sense to say that p™ is an «initial» marginal for
- pl, As a matter of fact our definitions of memoryless sources
and of stationary memoryless sources (or, rather, our choice of the
terms «memoryless» and «stationary memoryless») are questionable;
events which «do not begin at initial time» are ruled out; in parti-
cular we are unable to define stationarity by itself. To discuss
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properly memory and stationarity, therefore, larger product algebras
are needed: in this more general context our definitions would be
better suited to the lower status of necessary conditions.

4. Entropy.

Let S be a source as in def. 2, § = {u™},.»1. An (optimal block-)
R-code of length n, R > 0, is a subset of Q" of maximal probability
subject to the comstraint that its cardinality is not greater than
exp(n R). Let d™ be an R-code; its error probability PS_"’ = P‘(;’) (R)
is defined as

P(R) = u(Qr — @) =1 — pm(gom)

Four quantities stand as candidates for the entropy of 8, H(8),
(inf ¢ = + ):

inf {R: lim inf P”(R) < 1}, inf{R: lim sup P" (R) < 1},
(~) inf{R: lim inf P'"” (R) = 0},
inf{R: lim sup P, (R) = lim P\"(R) = 0}.

It is well-known that in many important cases these four infima
coincide, leaving no room for doubts.

Definition 3: In the four infima (~) coincide, any of them is
called the entropy of source §, H(S).

Before proceeding we indulge in some «functional» heuristics.
Let us go back to the decomposition which appears in lemma 4,
and let us assume that a = 1, so that U actually appears in the
decomposition (p is properly non-c-additive). The «usual» entropy
H(u) is concave, so that one would expect

H(p) = eH(Q)+ (1 —a)H(U).

On the other hand U can be seen as the «limit» of uniform distri-
butions U, over {w;,w;,...,w,} as n goes to infinity. Since the
«usual» entropy is continuous this would give

H(U) =1limH(U,) =1lim log n = + oo,

and therefore also H(p) = + o for any g with s(p) < 1. Instead we
shall pursue the pragmatic approach to entropy. Nevertheless it will
turn out that also this approach gives the same resulit.

An extremely rough bound on P™(R) can be given using only
the fact that a code is a finite set. As a matter of fact pn™ () £ stn
(lemma 2) gives
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(***) Pgn) (R) AN 1 — S(")

This is enough to state simple conditions ensuring that (some
of) the four infima (») are + <. In particular:

Proposition 1: For a stationary memoryless source & = {p™ }ns1,
pM™ = p, with s(p) < 1H(S) = + o.

Proof: Use lemma 5.

Roughly speaking this means that stationary memoryless
sources are intractable from the point of view of compressibility if
they are ruled by a properly non-c-additive p.d. (We recall that
such «intractable» sources exist even in the c¢-additive case; see the
introduction). Proposition 1 entitles us to give the following defi-
nition:

Definition 4: Let p be a p.d. over Q@ with s(p) < 1; then the
entropy of w, H(p), is set equal to + .

() implies also:

Proposition 2: If H(8) < + o, then lim s = 1.

Proof: Obvious. MW

Therefore «asymptotic» o-additivity is required for the entropy
to be finite: in this sense no «essentially» non-s-additive source is
compressible.

We shall give a more detailed analysis of the error probability
and make it amenable to the errotr probability of an ordinary c-ad-
ditive source. We need some observations: 1st: To obtain an R-code
one can list the elements of Q" in order of non-increasing probability
and then take as many as possible starting from the beginning.
2nd: Set p™ = a™ Q™ 4 (1 — a/™) U, Q™ ¢-additive, as in lemma 4.
Since p™ (xm) = al® QM (x™), if w™ 2 0 the order of non-increas-
ing probability is the same for p™ and Q®. Therefore an R-code

for the dummy c-additive source § = {Q™},x; is also an R-code for
the original source § = {p™},s1; this is also (trivially) true for
a™ = 0. (To be fastidious, the Q™ should be prolonged over the
g-algebras of all subsets to get an «ordmary» source; extra proba-
bilities, however, are irrelevant).

. If dm is an R-code, one has:
p(Z) (R) = p™ (Q7 — ) =1 — a 4 a QW(Qr — fm) =

=1—a® + a(")ﬁzn) (R)

where I;L " (R) is the error probability corresponding to the ordinary
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source §. Thus the analysis of the true error probability P™ (R)

is amenable to the analysis of the error probability for the c-addi-

tive source S.

Remark: In section 3 we have argued that stronger definitions

of memoryless and stationary memoryless sources are needed. Prop-
osition 1 would then hold true a fortiori; in particular definition 4
would still be heuristically sound.
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