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SOMMARIO. - Su una varieta di Riemann siano p e y due funzioni biarmoniche
di Green caratterizzate dalle condizioni iniziali di Dirichlet B=08/on=0
e y=A4y =10 sul contorno ideale di M, e sia g la funzione armonica di
Green su M. In questo lavoro ci occupiamo delle relazioni tra le classi

Ofgv, O;J,V, O;V di N-varietad di Riemann che non portano B, v, g, rispetti-
vamente.

SUMMARY. - On a Riemannian manifold M let B and y be the biharmonic
' Green’s functions characterized by Dirichlet data f=0f/om=0 and
y=Ady=0 at the ideal boundary of M, and let g the harmonic Green’s
function on M. In this paper we are interested in relations between the

classes Of‘{, Of, O;V of Riemannian N-manifolds which do not carry 8, 7, g
respectively.

On a Riemannian manifold M, let § and y be the biharmonic
Green’s functions characterized by « Dirichlet data f=98/dn=0 and
y=Ay=0 at the ideal boundary of M”. Denote by g the harmonic
Green’s function on M. We are interested in relations between the

classes Ofev ; Of,v, Of,v of Riemannian N-manifolds which do not carry
B, v, or g, respectively.

It was shown in Ralston-Sario [7] that Og COf, and in Nakai-
Sario [3] that, in fact, Ofgv < O,I,V for every N=2. On the other hand,
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0) <0}, so that OF U0y cO;. Whether or not this inclusion is
strict has been an open question. The main result of the present paper
is that the inclusion is strict,

ojuo; <0y  (N=2),

i. e., there exist Riemannian manifolds of any dimension which carry
both § and g but nevertheless fail to catry 7.

As to relations between O;}r and O] , it is known that of —Ofgv=i= %)
(Nakai-Sario [2]1, [3]). We will show that

oyno¥+@, O0F-0/+@  (N=2
as well. That there also exist Riemannian N-manifolds (N=2) carrying
both B and g is trivial in view of the Euclidean N-ball.
1. Parabolic manifolds without g. We claim:

THEOREM 1. There exist parabolic Riemannian manifolds of any
dimension which carry no biharmonic Green’s function f,

O N0y =@ (N=2).

ProoF. Let M be the N-space {0< |x| =r< oo} with the metric
| o
ds’=g¢? (r) dr*+ N (r) Z 2: () (0",
i=1

where @,¢ are strictly positive functions in C* [0; o) with ¢?=1,
2N = on {r<1/2} and the A; are the trigonometric functions
of 0=(@', ... ,6"-") which make the metric Euclidean on {r<1/2}. Set

o=o¢, t=9¢, 1 (O)= (NI;1 Ai (0)"2) .
t==1

In terms of the metric tensor, we have g'?=ocl and g'?g"=7141.
The Laplace-Beltrami operator is

N—-1 2

0 c
—_ a—1/2 1/2 s 12 gt
4= d5+6d 9 {ar (g 9 ar) T 51 00* (g y 00" )]

where we have used the Einstein summation convention.
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- . The function

r

h(r):fr(s) ds

1

satisfies the harmonic equation
Ah(N=—0o"'(z"1K') =0.

For a ﬁXed' p€(0, o), the function

qe(r):j Tfadsdt
r 1

satisfies the quasiharmonic equation

Aq(N=—o'l(z71qg) =1,

. _g o ,
ug(r)=j':fa[7dsdtdv '
r 1 1

satisfies the biharmonic equation

and the function

Au(r)= —-0'“‘(-:“ u'y = ] 7 (5) ds.

1
The function

g (p)

ﬁe (=u, (n+c, qe (1), o =— )’

is biharmonic and meets the boundary conditions

Bo (0)=fe (0)=0.

. e ¢

e v ¢ fafrdsdt
,Be(r)=fz'fafrdsdtdfv— ! 'Q
R fads

1

We write in extenso

4 t> ' -
[Tfadsdt.
r 1
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On {r>1}, choose c=7=1, i. e., take the metric

° N-—-1

ds’=dr*+ = 1: () (d 6.
t=1 -

‘h (r)=fds
1

is unbounded, hence the harmonic measure of the ideal boundary
r=oco of M on {r=1} is w=ah+b=b= const, and we have MeO,N
(cf., e. g., Sario-Nakai [10]). On the other hand,

f(t—l) at

Bo(r)= [f(t——l) dt dy— *—o— /(t-—l)dt—

Then

= 17— (=11 = (= 1) [(o— 1~ (r— 17

is unbounded in p. Since the existence of f on M is independent of
the pole and the exhaustion (Nakai-Sario [4]), we conclude that

MeOj .

2. Hyperbolic manifolds without . It is known that there exist
patabolic manifolds which carry f (Naka1 Sario [2], [3]). We proceed
to show:

THEOREM 2. There exist hyperbolic Riemannian manifolds of any
dimension which carry no biharmonic Green’s functions f,

oV _of +@  (N=2).

Proor. This is a corollary of O?—Oﬁp % J established in Nakai-,
Sario [6]. Here we give an independent proof. Consider again the
N-space with the metric ' :

d=g (P d+4 (YITD 3 1 0) @OV,
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but now take

[oe)

h(r)#fr(s) ds

r
and

(4 o0

e v oo /a vdsdi ,
ﬁg(r)zfz'[d/rdsdtdv—é ; ]r[odsdt.
r 1 t ].GdS r 1 :
1

On { r>‘1}, choose o=r, =172, i. e., consider the metric

N—-1
ds’=r1dr4-r®-1 % 1,0 (d 6)
1=}
Then

h(¥= fs‘z ds

7

is bounded, hence M ¢ON, whereas

3 v ' e |
-1 1
ﬁg (f):[v"zf t-t_ldtd’l)—'(l—/;j‘zzz__—l) ft_z'—z—(ﬁ—l) dt=
r 1 r

1
= log‘—f— + ™ =r )~ Pl e aalay

is unbounded in p, and we have MeO} .

3. Hyperbolic manifolds with # but without y. The goal of
the remainder of the present work is to show that, for N>2,

(1) of —ojuo)+0.

For N=2, the Euclidean half-plane belongs to this class, as was
first shown by J. Ralston. The authors are pleased to acknowledge
the gratitude to Professor Ralston for communicating this unpublished
result to them. Ralston’s elegant proof is based on an explicit formula
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for B in the case N=1 and a further development of the technique in
Ralston-Sario [7]. Here we give an alternate proof which utilizes
results in Nakai-Sario [4]. Let II?> be the half-plane x'>0 in E’. The
harmonic Green’s function ‘ '

zZ
z—{

+‘é‘]

1
gz 0= 5-log

on I gives trivially I’¢ 02 Let 2; be a neighborhood of { with
2. CIP, and set G=IP—Q;, G,={r>p||argz| <n/4}NG. As p—>oo,

2
|lgl|%=c / rdrdﬁZcf
¢ v é

e

2

rdrdi~

[oo]
1
~C[F crdr=oo,
e

hence I2€OY . On the other hand, we showed in [4] that the subregion
2?={|z] > 1} of E? carries f. Since the existence of f on a Riemannian
menifold entails that on a subregion (loc. cit.), the relation I+
+1c32¢l0% gives II’4+1¢ 05 and, therefore, II’¢ 0} .

Actually, for S¥={r>1} in E¥, we proved in [4] that

z+¢
2—¢

log log Z—Eg

@ SNeO)Y —0f UOY  (N=2,3,4).

This example has the virtue of being simple and natural. However,
since EN¢O) UO?UO;V for N=5, every subregion of EN has the
same property. As a consequence, there do not exist « simple and na-
tural » Riemannian manifolds in Of,v—Ong UO;V for N=5. That this

class is, nevertheless, nonvoid for N=5 as well is the main result of
the present paper.

4. A test for OF —0F UO]. Our construction will be guided by
the following test, a direct consequence of our results in [4]. On a
Riemannian N-manifold M ¢Og with exhausting regular subregions £2,
we continue referring to the uniform convergence of fo to fu on
compact subsets of M XM as the consistency of fu on MXM. The
Riemannian volume element at xeM is denoted by dV..
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THEOREM 3. Let M be a hyperbolzc Riemannian N-manifold (N >2)
with the harmonic Green’ s function Gu (x,y). For a parametric ball B
with center 1, suppose

(3) / Gu (x,n)?dV,=co
' M-B
but '
@ . f (Gu (%, y)—Gu (x, M) dV:< oo
- M-

for any yeM—B and any regular subregion 2 of M with .QDBUy
Then '

(5) M-BeO) —0j uo?,

and B, 5 is continuous and consistent on (M —B)X (M —B).

The relations M—B¢O; and M—BeO} are again immediate.
The function Gu (x,y)—Gu (x, ) is a fundamental kernel on M—B
in the sense of [4], and a fortiori M — B¢O,g If, in the definition of

Oﬂ , we disregard the continuity and consistency of § on the product
space, then, Gu (x, y)—Gu (x, 77) being square integrable off its pole

y, the characterization of O,g given in [5] makes the relation
M—§¢O,§V as trivial as M—B¢O) .

5. Comparison principle. We insert here a general statement
which will be used later. Let 0<a<f< o and qeC!(a, f). Consider
the ordinary differential operator

(6) Lu = (')’ — pu
with peC (a, f). If a function u satisfies
(7) : ‘ , Lu<0

on (a, f§), then it is called a supersolution on (a, f). If a supersolution
u satisfies

8) | liminf u (r)=0, - liminfu (r)=0,

r—+a r—=g
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then u=0 on (a,f). This result was obtained, and called the compa-
rison principle, by Nakai [1] (the proof for the above operator is the
same as for the elliptic operator). We will use this principle in the
following form:

LEMMA. Let u be a solution of Lu=0 in (a,f) with boundary
values u (a) and u (B), and let v be a supersolution, i. e., Lv<0, on
(a, B) with boundary values v (a)=u (@) and v (f)=u (f). Then u<w
on (a,f). '

6. Expansions in spherical harmonics. For convenience, we
_compile here some fundamentals on spherical harmonics. At a point
x=(x!, .., x"Y) of EN, N=2, the line element ]deZ:ZiIY_-l(dx")2 reads
in polar coordinates (r,0)=(r,6", ...,0%") |

©) ldxp=dr+r 'S 2.0) (d 6y’

1=1

with |x|=r and the A; certain trigonometric functlons of 0= («91 HN ).,
The surface element d # of the unit sphere Ox={ [x| =r=1} is

. N-—-1 1/2
(10) d0=2 ) d0 ..d 6", A @)= (n 2 (9)) ,
. 1 X
the area wy of @y is
a1 f d0=wy=21"" (I (N/2),
| J .

and the volume element is dx=dx!'...dx"=r""1drd@f. For the Eiicli-
dean Laplace-Beltrami operator Ay we have

PR L6
—a0A* T L (1010 50).

A spherical harmonic S. () of degree n=1 is, by deﬁnltlon charac-
terized by Awn (" S,)=0, and therefore,

(13) An Sn=n (n+N—2) r-28S,,.
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Let {Swm} (m=1,...,m,) be the complete orthonormal system of
spherical harmonics of degree n=1. Then

1 ‘
) Snm; m=1,...,mn, n=1,2, .
N :

is a complete orthonormal system in L, (@, d ). Moreover, if peC! (©),
then

oo L ad n

P=Co+ z Z Crm Snm

n=1 m=1

with co=(@, 1)/wn, Cam=(®, Swr), the inner product being in L, (O, d ),
and the series is absolutely and uniformly convergent on ®; if ¢
depends on a parameter re[r,r,] and @eC!([r, ] X®), then the
convergence is uniform on [r, n] X0.

7. Main result. We endow X¥={ |x| =r>1} with the metric
» N1 . |
(14) ds’=r* dr*+-r8¥-1 3 ), (0) (d 8y,
"1

Where the 4:(0) (i=1,..,N—1) are as in (9), and we denote by
N the resulting Rlemanman manifold. We maintain:

MAIN THEOREM. The manifold 4 (N=5) is hyperbolic, carries
no v, but carries a § which is continuous and consistent on 3N X Z4N:

(15 = ZiNe0y —05 UOY  (N=5).

The proof will be given in Nos. 7-11.

Choose strictly positive C° functions Ry (#), R (r) on [0, =)
such that Ri () =r%, R, (r)=r® %=1 on [1, ) and R (r)=1, R, ) =r
on [0, 1/2]. The metric :

d?:Rl (r) dr*+R; (r) NEI A: (0) (d 6%,
1

is C= on EN, ds=ds on 3V, and ds= |dx| on |x| <1/2. Accordingly,
we may and will henceforth view ds as a metric on EN, with ds= |dx]
on x| <1/2.
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8. Hyperbolicity. In the metric ds on EY, the volume element
dV on XV is

(16) dV=rtdrdd,

the surface element dS on |x| =r=1 is

(17) dS=r‘dé,

and the interior normal derivative dp/dn on |x| =r>1 is

. )
(18) g—n?’— — 2 érﬂ

The Laplace-Beltrami operator A with respect to ds takes the form

(19) Ap=—r" —é-(rz——qo)—

N—l 0

—( @) rem=D)t 3 ( @ L @)

36° q’)
For a function ¢ (8), (12) and (19) give |
20) Ap=r=30 Ay (=) O).

As a counterpart of (13), we thus have

1) AS,=n(n+N—2) r=8- g,

for every spherical harmonic S, of degree n=1.
For a function ¢ (7),

22) s=-rg(P59) w=s0.
In terms of the ordinary differential operator

Ly=g (P2 4),

¢ (x)=¢ (|x|) belongs to the class H (|x] >1) of harmonic functions
relative to ds if and only if L ¢ =0, i. e.,
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v=cotcr,

with ¢, ¢; constants. Thus

l—p/lxl =1—p/r

is the harmonic measure of the ideal boundary oo of Zy" (and of
E« on |x| >p>1. Therefore, EN¢ON and

(23) - - ZN¢ON.
9. An inequality. The constant py=NN-DI6¥—14:  dominates 1
in our case N=5. This px is s0 chosen that -

(24) n-4N — 53 < np6N—14)/(N—1)

for every n=1,2, ... and every re [pn, o). Consider the ordinary diffe-
rential operator '

d a
=222 g) D) p 6N—14/(N—1)
(25) N “Lngb dr(r?d'r gl/) n(n+N 2)r " ¢
for each n=0,1,2 ... on' [1, oo‘). Observe that
Lot7'=—n(n+N-2) r(BN—“’/(N"‘) rl<o,
. |

i. e, rlis a supersolu'uon df L.¢=0 on [1 ). Since 0 is a
solution of L,¢=0, the Perron method assures the unique existence
of a solution u of L, ¢=0 on [1 o) with boundary values u(l):l
and u (e0)=0. Hence there ex1sfs a unique solution

é (r° p)

\

1
of L,¢=0 on [p, =) (p=1) with boundary Values e, (p; p)=1 and
€, (o0; p)=0. The key relation 1n our reasonmg will be ‘

(26) [0} <e1’l (r; ]p) SpH+N—2/rn+N_2 A
|

for every n=1,2,... and rfe [pl °°,,), with p=py. For the proof, (24)
gives ! .

L, r—n—N+2._ (n+N 2) (n—i—N 3 — pr (6N—14)/(N—1) ) r-n-N+2<0

By the oomparlson principle, we obtain (26)

i
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10. Fourier expansion. Let heH ( ]xl >p) (p=pn). We consider
its Fourier expansion

0 My

(27) b, 0)=ho()+ 2 Z hum (r) Snm ©)

n=1 m=1

for re(p, ), with A hy=A4 (hym Sum)=0 for every n and m. The expan-
sion converges absolutely and uniformly on compact sets of {|x| >p}
By (19) and (21),

for every n and m on (p, ). We assume that 4 (r, §) is continuous on
- P=<|x| = and of class C' on p=< |¥| < o, and

Q9) " lim h(,6)=0.

Then ko and h,» also are continuous on [p, eo] and
(30) - ho=coeo (+; ), hum=Cumen (-3 p),

with co=ho (0), Com="H.m (p), and

o my o My,

G e + 21 Z lewm| <00, e+ T 2 |owmfP< co.
n=1l m=1 )

n=1 m=1

Expression (27) thus takes the form

(32) h(r,=coeo (r; p)+ OEO ( ,:):"” Cnm Sum (0)) e, (r; p)

n-l me=]

on [p, «].

1. Conclusion. Let G(x, y)=G (r, §; y) be the harmonic Green’s

function on Es~, normalized by -the flux f *dG=—1 across .a hyper-

sphere @ about y. In particular,

G3) G (r,8; 0)=ceo (r: 1)=cr-*
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with ¢=G (1,6; 0), on Z4. By (16),

(34) /G (x, O)de =w~cfr‘2-r6dr=oo.;
=y 1
We claim that
(35) : / (G (x,9)—G (x,0))?dV.< oo (o=pn+ |y])

|z]>e

for yeXsN. For the proof, we? apply (32) to G (-,2) with |z] < |y

n=1 \m=1 .

|
(36) G (r,0;2)=co(2) e (r; p$+ z (chnm (2) Sum (0)> e (r; p)

for r=p. Since

1
@ and=q [Cotd,
<)
we have ,
d ; 1 ad
€ (2)7- e (75 p)= on /&';G (r,0;2)dé,
‘ . : e
and, by (17) and (18), obtain‘

| a , _  1 6 }
—Co (Z)T‘z'd—r € ({3 p)= on f an, G (x; 2) dS.
’ L i |¢|=’r V

4 |
Here .the integral is the value at z of the harmonic function on x| <r

with boundary values 1 on |x| =r, i. e., of the constant function 1.
Since e (r; p)=p/r,

37 o (2)=(wn p)7%,

i. €., c(2) is constant for all |}z'| < |y|. Therefore,

(38) Gr.0;y—-G(0,0= X ( 4 A Snm (9)) en (r; p)

‘, T o=l \m==1
i
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where dum=Cum (y) — Cum (0) =Cum (y). Thus,

' f(G r,0; V-G (r,0;0)*dl0= = ( En dznm) en (r; p)?
é

n=1 \m=l1

and consequently,

o0

(39) [ (G (5, 3) =G (x, 0F dVe= % ky fen (r; p)* 1* dr
127> e =y
with kn=”gl d*m. Here, by (31),
@ = fou< oo,
Now we make use of (26):
41) | f:, (r.';. p)? 18 dr < p*"+N-2) [ r‘z”'é"’ Hohdp<
e e

SPZ(m-N—Z)fr—Zn drs

e

1
< - M2N-3
=om—1°?

since N=5. By (39),

(42) ‘ f(G x, y)—G (x,0)?dV.< .OZO pN3. Fen .
n=1 2n—1
|zl >e _
This with (40) implies (35).
With (34), (35), and Theorem 3, the proof of the Main Theorem
is complete.
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